Displaying all 3 publications

Abstract:
Sort:
  1. Panda D, Manickam S
    Ultrason Sonochem, 2019 Mar;51:526-532.
    PMID: 30224289 DOI: 10.1016/j.ultsonch.2018.04.003
    Dicofol, a recommended Stockholm convention persistent organic pollutants (POPs) candidate is well known for its endocrine disruptive properties and has been extensively used as an organochlorine pesticide worldwide. The hydrodynamic cavitation (HC) treatment of Dicofol in aqueous media induced by a liquid whistle hydrodynamic cavitaion reactor (LWHCR) has been investigated while considering important parameters such as inlet pressure, initial concentration of Dicofol, solution temperature, pH, addition of H2O2 and radical scavenger for the extent of degradation. The pseudo-first-order degradation rate constant (k) was determined to be 0.073 min-1 with a cavitational yield of 1.26 × 10-5 mg/J at optimum operating conditions and a complete removal of Dicofol was achieved within 1 h of treatment. Considering the removal rate and energy efficiency, the optimal inlet pressure was found to be 7 bar, resulting in a cavitation number of 0.17. High performance liquid chromatography (HPLC) and Gas chromatography mass spectroscopy (GC-MS) analyses indicated a sharp decline in the concentration of Dicofol with treatment time and indicated the presence of degraded products. An 85% total organic carbon (TOC) removal was achieved within 1 h of treatment time, demonstrating successful mineralization of Dicofol. The obtained results suggest that the degradation of Dicofol followed thermal decomposition and successive recombination reactions at bubble-vapor interface. Overall, the attempted hydrodynamic cavitation demonstrated successful and rapid removal of endocrine disruptive chemicals such as Dicofol and is expected to provide efficient solution for wastewater treatment.
  2. Panda D, Manickam S
    Ultrason Sonochem, 2017 May;36:481-496.
    PMID: 28069236 DOI: 10.1016/j.ultsonch.2016.12.022
    Sonophotocatalysis (SPC) is considered to be one of the important wastewater treatment techniques and hence attracted the attention of researchers to eliminate recalcitrant hazardous organic pollutants from aqueous phase. In general, SPC refers to the integrated use of ultrasonic sound waves, ultraviolet radiation and the addition of a semiconductor material which functions as a photocatalyst. Current research has brought numerous improvements in the SPC based treatment by opting visible light irradiation, nanocomposite catalysts and numerous catalyst supports for better stability and performance. This review accomplishes a critical analysis with respect to the recent advancements. The efficiency of SPC based treatments has been analyzed by considering the individual methods i.e. sonolysis, photocatalysis, sonophotolysis, sono-ozone, photo-Fenton and sono-Fenton. Besides, the essential parameters such as solution temperature, concentrations of initial pollutant and catalyst, initial pH, dosages of Fenton's reagent and hydrogen peroxide (H2O2), ultrasonic power density, gas sparging, addition of radical scavenger, addition of carbon tetrachloride and methanol have been discussed with suggestions for the selection of optimum parameters. A higher synergistic pollutant removal rate has been reported during SPC treatment as compared to individual methods and the implementation of numerous doping materials and supports for the photocatalyst enhances the degradation rate of pollutants using DSPC under both visible and UV irradiation. Overall, SPC and DSPC based wastewater treatments are emerging as potential techniques as they provide effective solution in removing the recalcitrant organic pollutants and progressive research is expected to bring out superior treatment efficiency using these advanced technologies.

    IMPORTANCE OF THIS REVIEW: The review has accomplished a thorough and a critical analysis of sonophotocatalysis (SPC) based on the recently published journals. Recent advancements in the doped sonophotocatalysis (DSPC) and the mechanisms behind synergistic enhancement in the pollutant degradation rate have been discussed with justifications. Besides, the possible future works are suggested for the advancements in sonophotocatalysis based treatment. This review will be beneficial for electing a SPC based method because of the accomplished sharp comparisons among the published results. The review includes current advancements of SPC based methods which aid for a low-cost and a large-scale wastewater treatment application.

  3. Pattanayak B, Le PA, Panda D, Simanjuntak FM, Wei KH, Winie T, et al.
    RSC Adv, 2022 Sep 22;12(42):27082-27093.
    PMID: 36276039 DOI: 10.1039/d2ra04194d
    High-performance porous 3D graphene-based supercapacitors are one of the most promising and challenging directions for future energy technologies. Microporous graphene has been synthesized by the pyrolysis method. The fabricated lightweight graphene with a few layers (FLG) has an ultra-high surface area of 2266 m2 g-1 along with various-sized micropores. The defect-induced morphology and pore size distribution of the fabricated graphene are examined, and the results show that the micropores vary from 0.85 to 1.9 nm and the 1.02 nm pores contribute 30% of the total surface area. The electrochemical behaviour of the electrode fabricated using this graphene has been studied with various concentrations of the KOH electrolyte. The highest specific capacitance of the graphene electrode of 540 F g-1 (close to the theoretical value, ∼550 F g-1) can be achieved by using the 1 M KOH electrolyte. This high specific capacitance contribution involves the counter ion adsorption, co-ion desorption, and ion permutation mechanisms. The formation of a Helmholtz layer, as well as the diffusion of the electrolyte ions, confirms this phenomenon. The symmetrical solid-state supercapacitor fabricated with the graphene electrodes and PVA-KOH gel as the electrolyte exhibits excellent energy and power densities of 18 W h kg-1 and 10.2 kW kg-1, respectively. This supercapacitor also shows a superior 100% coulombic efficiency after 6000 cycles.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links