Displaying all 7 publications

Abstract:
Sort:
  1. Yanagisawa D, Hamezah HS, Pahrudin Arrozi A, Tooyama I
    Sci Rep, 2021 May 05;11(1):9623.
    PMID: 33953293 DOI: 10.1038/s41598-021-89142-2
    Tau, a family of microtubule-associated proteins, forms abnormal intracellular inclusions, so-called tau pathology, in a range of neurodegenerative diseases collectively known as tauopathies. The rTg4510 mouse model is a well-characterized bitransgenic F1 hybrid mouse model of tauopathy, which was obtained by crossing a Camk2α-tTA mouse line (on a C57BL/6 J background) with a tetO-MAPT*P301L mouse line (on a FVB/NJ background). The aim of this study was to investigate the effects of the genetic background and sex on the accumulation of tau pathology in reciprocal F1 hybrids of rTg4510 mice, i.e., rTg4510 on the (C57BL/6 J × FVB/NJ)F1 background (rTg4510_CxF) and on the (FVB/NJ × C57BL/6 J)F1 background (rTg4510_FxC). As compared with rTg4510_CxF mice, the rTg4510_FxC mice showed marked levels of tau pathology in the forebrain. Biochemical analyses indicated that the accumulation of abnormal tau species was accelerated in rTg4510_FxC mice. There were strong effects of the genetic background on the differential accumulation of tau pathology in rTg4510 mice, while sex had no apparent effect. Interestingly, midline-1 (Mid1) was identified as a candidate gene associated with this difference and exhibited significant up/downregulation according to the genetic background. Mid1 silencing with siRNA induced pathological phosphorylation of tau in HEK293T cells that stably expressed human tau with the P301L mutation, suggesting the role of Mid1 in pathological alterations of tau. Elucidation of the underlying mechanisms will provide novel insights into the accumulation of tau pathology and is expected to be especially informative to researchers for the continued development of therapeutic interventions for tauopathies.
  2. Pahrudin Arrozi A, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S
    Int J Neurosci, 2017 Mar;127(3):218-235.
    PMID: 27074540 DOI: 10.1080/00207454.2016.1178261
    Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of disability associated with neurodegeneration worldwide. These diseases are influenced by multiple genetic and environmental factors and share similar mechanisms as both are characterized by accumulation and aggregation of misfolded proteins - amyloid-beta (Aβ) in AD and α-synuclein in PD. Over the past decade, increasing evidence has shown that mitochondrial dysfunction and the generation of reactive oxygen species (ROS) are involved in the pathology of these diseases, and the contributions of these defects to the cellular and molecular changes that eventually cause neuronal death have been explored. Using mitochondrial protective agents, such as antioxidants, to combat ROS provides a new strategy for neurodegenerative treatment. In this review, we highlight the potential of multiple types of antioxidants, including vitamins, phytochemicals, fatty acids and minerals, as well as synthetic antioxidants specifically targeting the mitochondria, which can restore mitochondrial function, in the treatment of neurodegenerative disorders at both the pre-clinical and clinical stages by focusing on AD and PD.
  3. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S
    Appl Biochem Biotechnol, 2017 Nov;183(3):853-866.
    PMID: 28417423 DOI: 10.1007/s12010-017-2468-6
    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.
  4. Matsuzaki Tada A, Hamezah HS, Pahrudin Arrozi A, Abu Bakar ZH, Yanagisawa D, Tooyama I
    J Alzheimers Dis, 2022;89(3):835-848.
    PMID: 35964178 DOI: 10.3233/JAD-220192
    BACKGROUND: Tripeptide Met-Lys-Pro (MKP), a component of casein hydrolysates, has effective angiotensin-converting enzyme (ACE) inhibitory activity. Brain angiotensin II enzyme activates the NADPH oxidase complex via angiotensin II receptor type 1 (AT1) and enhances oxidative stress injury. ACE inhibitors improved cognitive function in Alzheimer's disease (AD) mouse models and previous clinical trials. Thus, although undetermined, MKP may be effective against pathological amyloid-β (Aβ) accumulation-induced cognitive impairment.

    OBJECTIVE: The current study aimed to investigate the potential of MKP as a pharmaceutical against AD by examining MKP's effect on cognitive function and molecular changes in the brain using double transgenic (APP/PS1) mice.

    METHODS: Experimental procedures were conducted in APP/PS1 mice (n = 38) with a C57BL/6 background. A novel object recognition test was used to evaluate recognition memory. ELISA was used to measure insoluble Aβ40, Aβ42, and TNF-α levels in brain tissue. Immunohistochemical analysis allowed the assessment of glial cell activation in MKP-treated APP/PS1 mice.

    RESULTS: The novel object recognition test revealed that MKP-treated APP/PS1 mice showed significant improvement in recognition memory. ELISA of brain tissue showed that MKP significantly reduced insoluble Aβ40, Aβ42, and TNF-α levels. Immunohistochemical analysis indicated the suppression of the marker for microglia and reactive astrocytes in MKP-treated APP/PS1 mice.

    CONCLUSION: Based on these results, we consider that MKP could ameliorate pathological Aβ accumulation-induced cognitive impairment in APP/PS1 mice. Furthermore, our findings suggest that MKP potentially contributes to preventing cognitive decline in AD.

  5. Pahrudin Arrozi A, Shukri SNS, Mohd Murshid N, Ahmad Shahzalli AB, Wan Ngah WZ, Ahmad Damanhuri H, et al.
    Front Cell Neurosci, 2022;16:846459.
    PMID: 35614968 DOI: 10.3389/fncel.2022.846459
    The amyloid precursor protein (APP) processing pathway was altered in Alzheimer's disease (AD) and contributed to abnormal amyloid-beta (Aβ) production, which forms insoluble interneuron protein aggregates known as amyloid plaques in the brain. Targeting the APP processing pathway is still fundamental for AD modifying therapy. Extensive research has evaluated the protective effects of vitamin E as an antioxidant and as a signaling molecule. The present study aimed to investigate the modulatory effects of different tocopherol isomers on the expression of genes involved in regulating the APP processing pathway in vitro. The screening for the effective tocopherol isomers in reducing APP expression and Aβ-42 was carried out in SH-SY5Y stably overexpressed APP Swedish. Subsequently, quantitative one-step real-time PCR was performed to determine the modulatory effects of selected tocopherol isomers on the expression of genes in SH-SY5Y stably overexpressed three different types of APP (wild-type, APP Swedish, and APP Swedish/Indiana). Our results showed that all tocopherol isomers, especially at higher concentrations (80-100 μM), significantly increased (p < 0.05) the cell viability in all cells group, but only α-tocopherol (ATF) and γ-tocopherol (GTF) significantly decreased (p < 0.05) the APP mRNA level without statistically significant APP protein level, accompanied with a reduced significance (p < 0.05) on the level of Aβ-42 in SH-SY5Y APP Swedish. On the other hand, β- and δ-tocopherol (BTF and DTF) showed no effects on the level of APP expression and Aβ-42. Subsequent results demonstrated that ATF and GTF significantly decreased (p < 0.05) the expression of gene beta-site APP cleaving enzyme (BACE1), APH1B, and Nicastrin (NCSTN), but significantly increased (p < 0.05) the expression of Sirtuin 1 (SIRT1) in SH-SY5Y stably expressed the mutant APP form. These findings suggested that ATF and GTF could modulate altered pathways and may help ameliorate the burden of amyloid load in AD.
  6. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Jaafar F, et al.
    Sci Rep, 2020 06 02;10(1):8962.
    PMID: 32488024 DOI: 10.1038/s41598-020-65570-4
    Vitamin E acts as an antioxidant and reduces the level of reactive oxygen species (ROS) in Alzheimer's disease (AD). Alpha-tocopherol (ATF) is the most widely studied form of vitamin E besides gamma-tocopherol (GTF) which also shows beneficial effects in AD. The levels of amyloid-beta (Aβ) and amyloid precursor protein (APP) increased in the brains of AD patients, and mutations in the APP gene are known to enhance the production of Aβ. Mitochondrial function was shown to be affected by the increased level of Aβ and may induce cell death. Here, we aimed to compare the effects of ATF and GTF on their ability to reduce Aβ level, modulate mitochondrial function and reduce the apoptosis marker in SH-SY5Y cells stably transfected with the wild-type or mutant form of the APP gene. The Aβ level was measured by ELISA, the mitochondrial ROS and ATP level were quantified by fluorescence and luciferase assay respectively whereas the complex V enzyme activity was measured by spectrophotometry. The expressions of genes involved in the regulation of mitochondrial membrane permeability such as voltage dependent anion channel (VDAC1), adenine nucleotide translocase (ANT), and cyclophilin D (CYPD) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), while the expressions of cyclophilin D (CypD), cytochrome c, Bcl2 associated X (BAX), B cell lymphoma-2 (Bcl-2), and pro-caspase-3 were determined by western blot. Our results showed that mitochondrial ROS level was elevated accompanied by decreased ATP level and complex V enzyme activity in SH-SY5Y cells expressing the mutant APP gene (p 
  7. Aldoghachi AF, Yanagisawa D, Pahrudin Arrozi A, Abu Bakar ZH, Taguchi H, Ishigaki S, et al.
    Biochem Biophys Res Commun, 2024 Jan 29;694:149392.
    PMID: 38142581 DOI: 10.1016/j.bbrc.2023.149392
    Thioredoxin interacting protein (TXNIP) has emerged as a significant regulator of β-cell mass and loss, rendering it an attractive target for treating diabetes. We previously showed that Shiga-Y6, a fluorinated curcumin derivative, inhibited TXNIP mRNA and protein expression in vitro, raising the question of whether the same effect could be translated in vivo. Herein, we examined the effect of Shiga-Y6 on TNXIP levels and explored its therapeutic potential in a mouse model of diabetes, Akita mice. We intraperitoneally injected Shiga-Y6 (SY6; 30 mg/kg of body weight) or vehicle into 8-week-old Akita mice for 28 consecutive days. On day 29, the mice were euthanized, following which the serum levels of glucose, insulin, and glucagon were measured using ELISA, the expression of TXNIP in pancreatic tissue lysates was determined using western blotting, and the level of β-cell apoptosis was assessed using the TUNEL assay. TXNIP levels in the pancreatic tissue of Akita mice were significantly elevated compared with wild-type (WT) mice. Shiga-Y6 administration for 28 days significantly lowered those levels compared with Akita mice that received vehicle to a level comparable to WT mice. In immunohistochemical analysis, both α- to β-cell ratio and the number of apoptotic β-cells were significantly reduced in SY6-treated Akita mice, compared with vehicle-treated Akita mice. Findings from the present study suggest a potential of Shiga-Y6 as an antidiabetic agent through lowering TXNIP protein levels and ameliorating pancreatic β-cells apoptosis.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links