In this paper, the efficient 3D placement of UAV as an aerial base station in providing wireless coverage for users in a small and large coverage area is investigated. In the case of providing wireless coverage for outdoor and indoor users in a small area, the Particle Swarm Optimization (PSO) and K-means with Ternary Search (KTS) algorithms are invoked to find an efficient 3D location of a single UAV with the objective of minimizing its required transmit power. It was observed that a single UAV at the 3D location found using the PSO algorithm requires less transmit power, by a factor of 1/5 compared to that when using the KTS algorithm. In the case of providing wireless coverage for users in three different shapes of a large coverage area, namely square, rectangle and circular regions, the problems of finding an efficient placement of multiple UAVs equipped with a directional antenna are formulated with the objective to maximize the coverage area and coverage density using the Circle Packing Theory (CPT). Then, the UAV efficient altitude placement is formulated with the objective of minimizing its required transmit power. It is observed that the large number of UAVs does not necessarily result in the maximum coverage density. Based on the simulation results, the deployment of 16, 19 and 26 UAVs is capable of providing the maximum coverage density of 78.5%, 82.5% and 80.3% for the case of a square region with the dimensions of 2 km × 2 km, a rectangle region with the dimensions of 6 km × 1.8 km and a circular region with the radius of 1.125 km, respectively. These observations are obtained when the UAVs are located at the optimum altitude, where the required transmit power for each UAV is reasonably small.
Background - Handling non-observed activities pose major challenges to the governments and other stakeholders. Non-observed activities refer to underground activities, illegal activities, informal sector and any other activities that result in goods or services consumed by the household. The impact of these non-observed activities shows that the volume of people involved in the informal sector will rapidly increase. Informal economic activities are technically illegal yet are not intended as antisocial, thereby remaining acceptable to many individuals within the society. This research aimed to identify the factors that lead to entrepreneurial necessity and opportunity. Methods - The data of 51 respondents who were employed as informal entrepreneurs in Klang Valley areas in Malaysia was collected with the use of a questionnaire and convenient and proportionate sampling techniques. The data were analysed using SPSS software. Results - The two primary drivers of informal entrepreneurial activity were necessity and opportunity. The inability to find a formal job was an example of being driven by necessity. Meanwhile, individuals that are driven by opportunity chose to work independently in these informal sectors. Between necessity and engagement, refinement acted as a mediator. Often, necessity and opportunity do not automatically translate into successful entrepreneurship; further refinement is required in terms of market potential, technology usage, location preferences, and capital requirements. Improved refinement results in increased entrepreneurial engagement. Conclusions - The role and contribution of the informal sector entrepreneurship in economic development need to be evaluated and not just observed as an opportunity for individuals who choose this type of career. Therefore, further research is required in a wider variety of contexts to evaluate whether the same remains true in different populations. The results of this study can be useful for the government to set policies to encourage the transition of informal to formal entrepreneurships in Malaysia.
The utilization of natural zeolite (NZ) as an adsorbent for NH4+ removal was investigated. Three types of NZ (i.e., NZ01, NZ02, and NZ03) were characterized, and their NH4+ adsorption process in aqueous solution was evaluated. The effect of pH towards NH4+ adsorption showed that the NZ01 has the highest NH4+ adsorption capacity compared with other natural zeolites used. The application of NZ01 for a simultaneous removal of NH4+ and turbidity in synthetic NH4+-kaolin suspension by adsorptive coagulation process for treating drinking water was studied. The addition of NZ01 into the system increased the NH4+ removal efficiency (ηNH4+) from 11.64% without NZ01 to 41.86% with the addition of 0.2 g L-1 of NZ01. The turbidity removal (ηT), however, was insignificantly affected since the ηT was already higher than 98.0% over all studied parameter's ranges. The thermodynamic and kinetic data analyses suggested that the removal of NH4+ obeyed the Temkin isotherm model and pseudo-second-order kinetic model, respectively. Generally, the turbidity removal was due to the flocculation of destabilized solid particles by alum in the suspension system. The ηNH4+ in surface water was 29.31%, which is lower compared with the removal in the synthetic NH4+-kaolin suspension, but a high ηT (98.65%) was observed. It was found that the addition of the NZ01 could enhance the removal of NH4+ as well as other pollutants in the surface water.
Hypertension and diabetes mellitus are among the most prevalent diseases affecting people from all walks of life. Medicinal herbs have garnered interest as potential agents for the prevention and treatment of diabetes mellitus and hypertension due to their multiple beneficial effects. Piper sarmentosum Roxb. (PS) is an edible medicinal plant that has been traditionally used in Asia for treating hypertension and diabetes mellitus. This review is aimed to provide comprehensive information from the literature on the effects of PS on hypertension and diabetes mellitus. A computerized database search was performed on Scopus, PubMed and Web of Science databases with the following set of keywords: Piper sarmentosum AND diabetes mellitus OR diabetic OR diabetes OR hyperglyc*emia OR blood glucose OR HbA1c OR glycated h*emoglobin OR h*emoglobin A1c OR hyperten* OR blood pressure. A total of 47 articles were screened and 14 articles published between the years 1998 until 2021 were included for data extraction, comprising of six articles on antihypertensive and eight articles on antidiabetic effects of PS. These studies consist of two in vitro studies and eleven in vivo animal studies. Meta-analysis of three studies on hypertension showed that PS versus no treatment significantly lowered the systolic blood pressure with mean difference (MD) -39.84 mmHg (95% confidence interval (CI) -45.05, -34.62; p < 0.01), diastolic blood pressure with MD -26.68 mmHg (95% CI -31.48, -21.88; p < 0.01), and mean arterial pressure with MD -30.56 mmHg (95% CI -34.49, -26.63; p < 0.01). Most of the studies revealed positive effects of PS against hypertension and diabetes mellitus, suggesting the potential of PS as a natural source of antidiabetic and antihypertensive agents.
Hyperglycemia is the hallmark of diabetes mellitus that results in oxidative stress, apoptosis, and diabetic vascular endothelial dysfunction. An increasing number of microRNAs (miRNAs) have been found to be involved in the pathogenesis of diabetic vascular complications. However, there is a limited number of studies that characterize the miRNA profile of endothelial cells exposed to hyperglycemia. Therefore, this study aims to analyze the miRNA profile of human umbilical-vein endothelial cells (HUVECs) exposed to hyperglycemia. HUVECs were divided into two groups: the control (treated with 5.5 mM glucose) and hyperglycemia (treated with 33.3 mM glucose) groups. RNA sequencing identified 17 differentially expressed miRNAs between the groups (p < 0.05). Of these, 4 miRNAs were upregulated, and 13 miRNAs were downregulated. Two of the most differentially expressed miRNAs (novel miR-1133 and miR-1225) were successfully validated with stem-loop qPCR. Collectively, the findings show that there is a differential expression pattern of miRNAs in HUVEC following exposure to hyperglycemia. These 17 differentially expressed miRNAs are involved in regulating cellular functions and pathways related to oxidative stress and apoptosis that may contribute to diabetic vascular endothelial dysfunction. The findings provide new clues on the role of miRNAs in the development of diabetic vascular endothelial dysfunction, which could be useful in future targeted therapy.
Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.
Background: Self-medication of drugs to alleviate symptoms is a common global behavior, helping relieve burdens on health services, but many drugs eg, antibiotics are prescription-only. Self-medication of antibiotics (SMA) is an irrational use of drugs, contributing to microbial resistance increasing health care costs and higher mortality and morbidity. This study aimed to assess SMA among university students. Methods: This was a cross-sectional study conducted among medical and non-medical students of the National Defence University of Malaysia. A validated instrument was used to gather data. Ethics approval was obtained. Random and universal sampling was adopted, and SPSS 21 was used for data analysis. Results: A total of 649 students participated in the study: 48.5% male and 51.5% female, 39.3% reported self-medicating with antibiotics. Penicillin, doxycycline, clarithromycin were the antibiotics most used with the majority reporting no adverse drug reactions. Cost savings and convenience were the principal reasons for SMA which were mainly obtained from local retail pharmacies. Despite medical students (particularly the more senior) having better knowledge of antibiotic use than non-medical students, 89% of all research participants responded that practicing SMA was a good/acceptable practice. Conclusion: SMA is common amongst Malaysian students and, despite understanding why SMA is unwise, even medical students self-medicate.