Displaying all 4 publications

Abstract:
Sort:
  1. Amri MR, Guan CT, Osman Al-Edrus SS, Md Yasin F, Mohamad SF
    Polymers (Basel), 2021 Apr 30;13(9).
    PMID: 33946517 DOI: 10.3390/polym13091460
    The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young's modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small (<3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.
  2. Saalah S, Abdullah LC, Aung MM, Salleh MZ, Awang Biak DR, Basri M, et al.
    Polymers (Basel), 2021 Mar 05;13(5).
    PMID: 33807622 DOI: 10.3390/polym13050795
    Nowadays, there is a significant trend away from solvent-based polyurethane systems towards waterborne polyurethane dispersions due to government regulations requiring manufacturers to lower total volatile organic compounds, as well as consumer preference for more environmentally friendly products. In this work, a renewable vegetable oil-based polyol derived from jatropha oil was polymerized with isophorone diisocyanate and dimethylol propionic acid to produce anionic waterborne polyurethane dispersion. Free standing films with up to 62 wt.% bio-based content were successfully produced after evaporation of water from the jatropha oil-based waterborne polyurethane (JPU) dispersion, which indicated good film formation. The chemical and thermo-mechanical properties of the JPU films were characterized. By increasing the OH numbers of polyol from 161 mgKOH/g to 217 mgKOH/g, the crosslinking density of the JPU was significantly increased, which lead to a better storage modulus and improved hydrophobicity. Overall, JPU produced from polyol having OH number of 217 mgKOH/g appears to be a promising product for application as a binder for wood and decorative coatings.
  3. Lee SH, Md Tahir P, Lum WC, Tan LP, Bawon P, Park BD, et al.
    Polymers (Basel), 2020 Jul 29;12(8).
    PMID: 32751175 DOI: 10.3390/polym12081692
    Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common chemical reactions applied in wood modification. CA contains three carboxyl groups, making it possible to attain at least two esterification reactions that are required for crosslinking when reacting with the hydroxyl groups of the cell wall polymers. In addition, the reaction could form ester linkages to bring adhesivity and good bonding characteristics, and therefore CA could be used as wood binder too. This paper presents a review concerning the usage of CA as a wood modifying agent and binder. For wood modification, the reaction mechanism between wood and CA and the pros and cons of using CA are discussed. CA and its combination with various reactants and their respective optimum parameters are also compiled in this paper. As for the major wood bonding component, the bonding mechanism and types of wood composites bonded with CA are presented. The best working conditions for the CA in the fabrication of wood-based panels are discussed. In addition, the environmental impacts and future outlook of CA-treated wood and bonded composite are also considered.
  4. Hakimi NMF, Lee SH, Lum WC, Mohamad SF, Osman Al Edrus SS, Park BD, et al.
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641056 DOI: 10.3390/polym13193241
    Natural rubber is of significant economic importance owing to its excellent resilience, elasticity, abrasion and impact resistance. Despite that, natural rubber has been identified with some drawbacks such as low modulus and strength and therefore opens up the opportunity for adding a reinforcing agent. Apart from the conventional fillers such as silica, carbon black and lignocellulosic fibers, nanocellulose is also one of the ideal candidates. Nanocellulose is a promising filler with many excellent properties such as renewability, biocompatibility, non-toxicity, reactive surface, low density, high specific surface area, high tensile and elastic modulus. However, it has some limitations in hydrophobicity, solubility and compatibility and therefore it is very difficult to achieve good dispersion and interfacial properties with the natural rubber matrix. Surface modification is often carried out to enhance the interfacial compatibilities between nanocellulose and natural rubber and to alleviate difficulties in dispersing them in polar solvents or polymers. This paper aims to highlight the different surface modification methods employed by several researchers in modifying nanocellulose and its reinforcement effects in the natural rubber matrix. The mechanism of the different surface medication methods has been discussed. The review also lists out the conventional filler that had been used as reinforcing agent for natural rubber. The challenges and future prospective has also been concluded in the last part of this review.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links