Displaying all 2 publications

Abstract:
Sort:
  1. Zafar M, H Zaidi ST, Husain SS, Bukhari NM
    Int J Prev Med, 2021;12:91.
    PMID: 34584657 DOI: 10.4103/ijpvm.IJPVM_331_19
    Background: In Saudi Arabia, fuel dispensing facilities commonly present around the residential places, educational institutions, and various health care facilities. Fuel pollutants such as benzene, toluene, and xylenes (BTX) and its alkyl derivatives are harmful to human health because of their toxic, mutagenic, or carcinogenic properties. The aim of this study was to determine the BTX concentration levels of common pollutants in and around fuel stations and their harmful health effects in the urban cites of KSA.

    Methods: Forty fuel dispensing facilities were randomly selected on the basis of three different areas: residential, traffic intersection, and petrol pump locations (refueling stations). Portable ambient analyzer was used for measuring BTX concentration. t-test was applied to determine the difference between these different areas.

    Results: All mean concentration values of pollutants such as BTX around residential, traffic intersection, and fuel stations are exceeding the limits of air quality standards values (P < 0.01). The mean levels of benzene are 10.3 and 11.07 ppm in Dammam and Khobar, respectively, and they exceed the reference level of 0.5 ppm. Hazard quotient was more than >1, which shows that carcinogenic probability has increased those who were living and working near fuel stations.

    Conclusions: The results found that the high concentration of pollutants (BTX) is in the environment around fuel stations. The environmental contamination associated with BTX in petrol fuel stations impulses the necessity of preventive programs to reduce the further air quality deterioration and reduce the harmful health effects.

  2. Batool T, Rasool N, Gull Y, Noreen M, Nasim FU, Yaqoob A, et al.
    PLoS One, 2014;9(12):e115457.
    PMID: 25545159 DOI: 10.1371/journal.pone.0115457
    A highly convenient method has been developed for the synthesis of (prop-2-ynyloxy) benzene and its derivatives. Differently substituted phenol and aniline derivatives were allowed to react with propargyl bromide in the presence of K2CO3 base and acetone as solvent. The compounds were synthesized in good yields (53-85%). Low cost, high yields and easy availability of compounds helped in the synthesis. Electron withdrawing groups favor the formation of stable phenoxide ion thus in turn favors the formation of product while electron donating groups do not favor the reaction. Phenol derivatives gave good yields as compared to that of aniline. As aprotic polar solvents favor SN2 type reactions so acetone provided best solvation for the reactions. K2CO3 was proved to be good for the synthesis. Antibacterial, Antiurease and NO scavenging activity of synthesized compounds were also examined. 4-bromo-2-chloro-1-(prop-2-ynyloxy)benzene 2a was found most active compound against urease enzyme with a percentage inhibition of 82.00±0.09 at 100 µg/mL with IC50 value of 60.2. 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene 2d was found potent antibacterial against Bacillus subtillus showing excellent inhibitory action with percentage inhibition of 55.67±0.26 at 100 µg/ml wih IC50 value of 79.9. Based on results, it can be concluded that some of the synthesized compounds may have potential antiurease and antibacterial effects against several harmful substances.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links