This research was conducted to study the effect of reinforcement particles on iron-cobalt (FeCo) composites. The composition of silicon carbide (SiC) was varied from 0 to 20 wt%. The composite was fabricated via powder metallurgy (PM) method, which consists of mixing, compaction and sintering processes. The powder was mixed for 2 hours to obtain uniformity between SiC and Fe-Co matrix and compacted to a cylindrical shape at 250 MPa. Samples were sintered for 2 hours at 900 o C with 10 o C/minute heating rate in argon atmosphere. The influences of reinforcement particle on the sintered samples were characterized in terms of microstructure and hardness testing. The Fe-Co/20wt%SiC composites show highest hardness value.
Currently, research in composite materials is being directed at using natural fibers instead of synthetics fibers. The use of natural fibers, derived from annually renewable resources, as reinforcing fibers in matrix provides positives environmental benefits with respect to ultimate disposability and raw material utilization. Natural fiber offers an alternative to the technical reinforcing fibers because of their low density, good mechanical performance, ultimate availability and disposability. Modifying the fiber surface by using chemical treatment can enhance bond strength between fiber and matrix. Chemical treatment also an effective way to clean the fiber surface, chemically modify the surface and increase the surface roughness. Surface analyses on fiber for before and after treatment were investigated using scanning electron microscopy (SEM).