Displaying all 5 publications

Abstract:
Sort:
  1. Hindia MN, Reza AW, Noordin KA
    ScientificWorldJournal, 2014;2014:246206.
    PMID: 25379524 DOI: 10.1155/2014/246206
    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.
  2. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2014;9(10):e109077.
    PMID: 25286044 DOI: 10.1371/journal.pone.0109077
    Interference resulting from Cognitive Radios (CRs) is the most important aspect of cognitive radio networks that leads to degradation in Quality of Service (QoS) in both primary and CR systems. Power control is one of the efficient techniques that can be used to reduce interference and satisfy the Signal-to-Interference Ratio (SIR) constraint among CRs. This paper proposes a new distributed power control algorithm based on game theory approach in cognitive radio networks. The proposal focuses on the channel status of cognitive radio users to improve system performance. A new cost function for SIR-based power control via a sigmoid weighting factor is introduced. The existence of Nash Equilibrium and convergence of the algorithm are also proved. The advantage of the proposed algorithm is the possibility to utilize and implement it in a distributed manner. Simulation results show considerable savings on Nash Equilibrium power compared to relevant algorithms while reduction in achieved SIR is insignificant.
  3. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2015;10(8):e0135137.
    PMID: 26258522 DOI: 10.1371/journal.pone.0135137
    Spectrum scarcity is a major challenge in wireless communications systems requiring efficient usage and utilization. Cognitive radio network (CRN) is found as a promising technique to solve this problem of spectrum scarcity. It allows licensed and unlicensed users to share the same licensed spectrum band. Interference resulting from cognitive radios (CRs) has undesirable effects on quality of service (QoS) of both licensed and unlicensed systems where it causes degradation in received signal-to-noise ratio (SIR) of users. Power control is one of the most important techniques that can be used to mitigate interference and guarantee QoS in both systems. In this paper, we develop a new approach of a distributed power control for CRN based on utility and pricing. QoS of CR user is presented as a utility function via pricing and a distributed power control as a non-cooperative game in which users maximize their net utility (utility-price). We define the price as a real function of transmit power to increase pricing charge of the farthest CR users. We prove that the power control game proposed in this study has Nash Equilibrium as well as it is unique. The obtained results show that the proposed power control algorithm based on a new utility function has a significant reduction in transmit power consumption and high improvement in speed of convergence.
  4. Hindia MN, Reza AW, Noordin KA, Chayon MH
    PLoS One, 2015;10(4):e0121901.
    PMID: 25830703 DOI: 10.1371/journal.pone.0121901
    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.
  5. Shams R, Abdrabou A, Al Bataineh M, Noordin KA
    Sensors (Basel), 2023 Sep 06;23(18).
    PMID: 37765757 DOI: 10.3390/s23187699
    Multiconnectivity allows user equipment/devices to connect to multiple radio access technologies simultaneously, including 5G, 4G (LTE), and WiFi. It is a necessity in meeting the increasing demand for mobile network services for the 5G and beyond wireless networks, while ensuring that mobile operators can still reap the benefits of their present investments. Multipath TCP (MPTCP) has been introduced to allow uninterrupted reliable data transmission over multiconnectivity links. However, energy consumption is a significant issue for multihomed wireless devices since most of them are battery-powered. This paper employs software-defined networking (SDN) and deep neural networks (DNNs) to manage the energy consumption of devices with multiconnectivity running MPTCP. The proposed method involves two lightweight algorithms implemented on an SDN controller, using a real hardware testbed of dual-homed wireless nodes connected to WiFi and cellular networks. The first algorithm determines whether a node should connect to a specific network or both networks. The second algorithm improves the selection made by the first by using a DNN trained on different scenarios, such as various network sizes and MPTCP congestion control algorithms. The results of our extensive experimentation show that this approach effectively reduces energy consumption while providing better network throughput performance compared to using single-path TCP or MPTCP Cubic or BALIA for all nodes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links