Displaying all 3 publications

Abstract:
Sort:
  1. Shuhada SN, Salim S, Nobilly F, Zubaid A, Azhar B
    Ecol Evol, 2017 09;7(18):7187-7200.
    PMID: 28944010 DOI: 10.1002/ece3.3273
    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
  2. Chung ELT, Predith M, Nobilly F, Samsudin AA, Jesse FFA, Loh TC
    Trop Anim Health Prod, 2018 Jun 20.
    PMID: 29926360 DOI: 10.1007/s11250-018-1641-4
    Brachiaria decumbens is an extremely productive tropical grass due to its aggressive growth habit and its adaptation to a varied range of soil types and environments. As a result of the vast availability, treated B. decumbens demonstrates as a promising local material that could be utilised as an improved diet for sheep and goats. Despite the fact that the grass significantly increases weight gains in grazing farm animals, there were many reports of general ill-thrift and sporadic outbreaks of photosensitivity in livestock due to the toxic compound of steroidal saponin found in B. decumbens. Ensiling and haymaking were found to be effective in removing toxin and undesirable compounds in the grass. Biological treatments using urea, activated charcoal, polyethylene glycol, and effective microorganisms were found to be useful in anti-nutritional factor deactivation and improving the nutritive values of feedstuffs. Besides, oral administration of phenobarbitone showed some degree of protection in sheep that fed on B. decumbens pasture. In this review, we aim to determine the effect of B. decumbens toxicity and possible treatment methods on the grass to be used as an improved diet for small ruminant.
  3. Denan N, Wan Zaki WM, Norhisham AR, Sanusi R, Nasir DM, Nobilly F, et al.
    Ecol Evol, 2020 Jan;10(2):654-661.
    PMID: 32015833 DOI: 10.1002/ece3.5856
    In human-modified landscapes, important ecological functions such as predation are negatively affected by anthropogenic activities, including the use of pesticides and habitat degradation. Predation of insect pests is an indicator of healthy ecosystem functioning, which provides important ecosystem services, especially for agricultural systems. In this study, we compare predation attempts from arthropods, mammals, and birds on artificial caterpillars in the understory, between three tropical agricultural land-use types: oil palm plantations, rubber tree plantations, and fruit orchards. We collected a range of local and landscape-scale data including undergrowth vegetation structure; elevation; proximity to forest; and canopy cover in order to understand how environmental variables can affect predation. In all three land-use types, our results showed that arthropods and mammals were important predators of artificial caterpillars and there was little predation by birds. We did not find any effect of the environmental variables on predation. There was an interactive effect between land-use type and predator type. Predation by mammals was considerably higher in fruit orchards and rubber tree than in oil palm plantations, likely due to their ability to support higher abundances of insectivorous mammals. In order to maintain or enhance natural pest control in these common tropical agricultural land-use types, management practices that benefit insectivorous animals should be introduced, such as the reduction of pesticides, improvement of understory vegetation, and local and landscape heterogeneity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links