Displaying 1 publication

Abstract:
Sort:
  1. Ngeow YW, Williams DR, Chapman AV, Heng JYY
    ACS Omega, 2020 May 12;5(18):10266-10275.
    PMID: 32426583 DOI: 10.1021/acsomega.9b03920
    The reinforcing silica filler, which can be more than 40% of an elastomer composite, plays a key role to achieve the desired mechanical properties in elastomer vulcanizates. However, the highly hydrophilic nature of silica surface causes silica particle aggregation. It remained a challenge for many tire manufacturers when using silica-filled elastomer compounds. Here, the silica surface energy changes when the surface is modified with coupling or noncoupling silanes; coupling silanes can covalently bond the silica to the elastomers. The surface energy of silica was determined using inverse gas chromatography (IGC) at finite dilution (FD-IGC) and found to be reduced by up to 50% when the silica surface was silanized. The spatial distribution of silica aggregates within the tire matrix is determined by transmission electron microscopy (TEM) and a direct correlation between aggregate size (silica microdispersion) and work of cohesion from IGC is reported, highlighting surface energy and work of cohesion being excellent indicators of the degree of dispersion of silica aggregates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links