Displaying all 2 publications

Abstract:
Sort:
  1. Bohari R, Jin Hin C, Matusop A, Abdullah MR, Ney TG, Benjamin S, et al.
    PLoS One, 2020;15(4):e0230910.
    PMID: 32236146 DOI: 10.1371/journal.pone.0230910
    Several sites, Z-7L, Z-5 and Z-14, in Sibu district, Sarawak, Malaysia, experienced intense dengue transmission in 2014 that continued into 2015. A pilot study with Bacillus thuringiensis israelensis (Bti) to control Aedes aegypti (L.) and Ae. albopictus (Skuse) was evaluated in Z-7L, a densely populated site of 12 ha. Bti treatments were conducted weekly from epidemiology week (EW) 24/2015 for 4 weeks, followed by fortnight treatments for 2 months, in addition to the routine control activities. Bti was directly introduced into potable containers and the outdoor artificial and natural containers were treated via a wide area spray application method using a backpack mister. Aedes indices significantly reduced during the treatment and post treatment phases, compared to the control site, Z-5 (p<0.05). A 51 fold reduction in the incidence rate per 100,000 population (IR) was observed, with one case in 25 weeks (EW 29-52). In Z-5 and Z-14, control sites, a 6 fold reduction in the IR was observed from EW 29-52. However, almost every week there were dengue cases in Z-14 and until EW 44 in Z-5. In 2016, dengue cases resurfaced in Z-7L from EW 4. Intensive routine control activities were conducted, but the IR continued to escalate. The wide area Bti spray misting of the outdoor containers was then included from EW 27 on fortnight intervals. A 6 fold reduction in IR was observed in the Bti treatment phase (EW 32-52) with no successive weekly cases after EW 37. However, in the control sites, there were dengue cases throughout the year from EW 1-52, particularly in Z-14. We feel that the wide area Bti spray application method is an integral component in the control program, in conjunction with other control measures carried out, to suppress the vector population in outdoor cryptic containers and to interrupt the disease transmission.
  2. Nordin O, Donald W, Ming WH, Ney TG, Mohamed KA, Halim NA, et al.
    PLoS One, 2013;8(3):e58805.
    PMID: 23527029 DOI: 10.1371/journal.pone.0058805
    Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available; traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying Dominant Lethality) approach has been developed, based on the sterile insect technique, in which genetically engineered 'sterile' homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for identification (DsRed2) and a protein (tTAV) that causes the offspring to die. We examined whether these proteins could adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx. splendens and Tx. amboinensis) and effects on life table parameters of all life stages were compared to being fed on wild type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign nature of the expressed proteins (tTAV and DsRed2) indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any adverse effects on predators in the environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links