The authors selected 38 thin-layer-chromatography (TLC) systems described in the available literature published over the last 10 years and evaluated those systems with respect to their suitability for detection and identification of opiates in urine, opium and heroin, as well as adulterants in heroin. A total of 14 substances: 8 opiates (morphine, 6-monoacetylmorphine, diacetylmorphine, codeine, acetylcodeine, noscapine, papaverine and thebaine) and 6 adulterants (ephedrine, quinine, methadone, caffeine, cocaine and strychnine) were used as test samples for this research. Using laboratory-coated plates and pre-coated plates, 15 and 13 TLC systems, respectively, were found to be able to detect and identify morphine and codeine in urine without interference from the remaining 12 substances. For the detection of opiates in opium samples as well as opiates and adulterants in illicit heroin samples the TLC system: chloroform-n-hexane-triethylamine (9:9:4) which was developed by the National Drug Research Centre, Penang, Malaysia, was found to be most suitable on both laboratory-coated and pre-coated plates. In addition, the following two systems, one on laboratory-coated plates--hexane-chloroform-diethylamine (50:30:7)--and the other on pre-coated plates--benzene-dioxane-ethanol-ammonia (50:40:5:5; T-7)--were also found to be among most suitable TLC systems for the analysis of opiates in opium samples. The article also presents the relative cost of each of the 38 evaluated TLC systems.
A rapid and selective high-performance liquid chromatographic assay for simultaneous quantitative determination of a new antifilarial drug (UMF-058, I) and mebendazole (MBZ) is described. After a simple extraction from whole blood, both compounds were analysed using a C18 Nova Pak reversed-phase column and a mobile phase of methanol-0.05 M ammonium dihydrogenphosphate (50:50, v/v) adjusted to pH 4.0, with ultraviolet detection at 291 nm. The average recoveries of I and MBZ over a concentration range of 25-250 ng/ml were 92.0 +/- 7.7 and 84.4 +/- 4.4%, respectively. The minimum detectable concentrations in whole blood for I and MBZ were 7 and 6 ng/ml, respectively. This method was found to be suitable for pharmacokinetic studies.
A method is described for the determination of pyronaridine in plasma using high-performance liquid chromatography with fluorescence detection. The method involves liquid-liquid extraction with phosphate buffer (pH 6.0, 0.05 M) and diethyl ether-hexane (70:30%, v/v) and chromatographic separation on a C18 column (Nucleosil, 250 x 4.6 mm I.D., 5 microns particle size) with acetonitrile-0.05 M phosphate buffer pH 6.0 (60:40%, v/v) as the mobile phase (1 ml/min) and detection by fluorescence (lambda ex = 267 nm, lambda em = 443 nm). The detector response is linear up to 1000 ng and the overall recoveries of pyronaridine and quinine were 90.0 and 60.3%, respectively. The assay procedure was adequately sensitive to measure 10 ng/ml pyronaridine in plasma samples with acceptable precision (< 15% C.V.). The method was found to be suitable for use in clinical pharmacological studies.
A rapid and selective high-performance liquid chromatographic (HPLC) method for the simultaneous determination of the antifilarial drug UMF-078 (I) and its metabolites UMF-060 (II) and flubendazole (III) is described. After a simple extraction from whole blood, the compounds were determined by HPLC using a C18 Inertsil ODS-2 reversed-phase column with methanol-0.05M ammonium acetate (pH 4.0) as the mobile phase and ultraviolet detection at 291 nm. The average recoveries of I, II and III over the concentration range 20-500 ng ml-1 were 69.9 +/- 4.7, 85.6 +/- 4.4 and 85.1 +/- 6.0%, respectively. The minimum detectable concentrations in whole blood for I, II and III were 10, 7 and 7 ng ml-1, respectively. This method was found to be suitable for pharmacokinetic studies.
A selective and sensitive HPLC assay for the quantitative determination of a new antifilarial drug, 6,4'-bis-(2-imidazolinylhydrazone)-2-phenylimidazo[1,2-a]pyr idine (CDR 101) is described. After extraction from plasma and blood, CDR 101 was analysed using a C18 Nucleosil ODS column (250x4.6 mm, 5 microm particle size) and mobile phase of acetonitrile-0.05 M ammonium acetate adjusted to pH 3.0, with UV detection at 318 nm. The mean recoveries of CDR 101 in plasma and blood over a concentration range of 25-500 ng/ml were 95.5+/-2.01% and 83.3+/-1.87%, respectively. The within-day and day-to-day coefficient of variations for plasma were 3.23-6.21% and 2.59-9.90%, respectively, those for blood were 2.59-5.92% and 2.89-6.82%, respectively. The minimum detectable concentration for CDR 101 was 1 ng/ml in plasma and 2.5 ng/ml in whole blood. This method was found to be suitable for clinical pharmacokinetic studies.
The combination of two sensitive, selective and reproducible reversed phase liquid chromatographic (RP-HPLC) methods was developed for the determination of artesunate (AS), its active metabolite dihydroartemisinin (DHA) and mefloquine (MQ) in human plasma. Solid phase extraction (SPE) of the plasma samples was carried out on Supelclean LC-18 extraction cartridges. Chromatographic separation of AS, DHA and the internal standard, artemisinin (QHS) was obtained on a Hypersil C4 column with mobile phase consisting of acetonitrile-0.05 M acetic acid adjusted to pH 5.2 with 1.0M NaOH (42:58, v/v) at the flow rate of 1.50 ml/min. The analytes were detected using an electrochemical detector operating in the reductive mode. Chromatography of MQ and the internal standard, chlorpromazine hydrochloride (CPM) was carried out on an Inertsil C8-3 column using methanol-acetonitrile-0.05 M potassium dihydrogen phosphate adjusted to pH 3.9 with 0.5% orthophosphoric acid (50:8:42, v/v/v) at a flow rate of 1.00 ml/min with ultraviolet detection at 284 nm. The mean recoveries of AS and DHA over a concentration range of 30-750 ng/0.5 ml plasma and MQ over a concentration of 75-1500 ng/0.5 ml plasma were above 80% and the accuracy ranged from 91.1 to 103.5%. The within-day coefficients of variation were 1.0-1.4% for AS, 0.4-3.4% for DHA and 0.7-1.5% for MQ. The day-to-day coefficients of variation were 1.3-7.6%, 1.8-7.8% and 2.0-3.4%, respectively. Both the lower limit of quantifications for AS and DHA were at 10 ng/0.5 ml and the lower limit of quantification for MQ was at 25 ng/0.5 ml. The limit of detections were 4 ng/0.5 ml for AS and DHA and 15 ng/0.5 ml for MQ. The method was found to be suitable for use in clinical pharmacological studies.
Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. This study aims to identify the chemical constituents of Typhonium flagelliforme particularly those which have antiproliferative properties towards human cancer cell lines.
Typhonium flagelliforme (Lodd.) Blume (Araceae) is a Malaysian plant used locally to combat cancer. In order to evaluate its antiproliferative activity in vitro and to possibly identify the active chemical constituents, a bioactivity guided study was conducted on the extracts of this plant.
A simple and sensitive RP-HPLC-UV method was developed and validated for simultaneous determination of atenolol and propranolol and subsequently applied to investigate the effect of dimethyl sulfoxide in rat in situ intestinal permeability studies. Atenolol (400 microm) and propranolol (100 microm) were perfused in the small intestine of anaesthetized (pentobarbitone sodium 60 mg/kg, i.p.) male Sprague-Dawley rats either in the presence (1, 3 and 5%) or in the absence of dimethyl sulfoxide. There was no significant alteration (p > 0.05) in the permeability of atenolol and propranolol, which indicated there was no effect of various concentrations of dimethyl sulfoxide (1-5%) on the membrane integrity of the rat intestinal tissues. The analytical method was validated on a C(4) column with a mobile phase comprising ammonium acetate buffer (pH 3.5, 0.02 m) and acetonitrile in the ratio of 30:70 (v/v) at a flow rate of 1.0 mL/min. The validated method was found to be accurate and precise and stability studies were carried out at different storage conditions and both analytes were found to be stable. These findings are applicable for determining the absorbability of water-insoluble drugs and new chemical entities for the purpose of classifying them in the biopharmaceutical classification system.
A simple, sensitive and specific reversed phase high performance liquid chromatographic (RP-HPLC) method with UV detection at 251 nm was developed for simultaneous quantitation of buparvaquone (BPQ), atenolol, propranolol, quinidine and verapamil. The method was applicable in rat in situ intestinal permeability study to assess intestinal permeability of BPQ, a promising lead compound for Leishmania donovani infections. The method was validated on a C-4 column with mobile phase comprising ammonium acetate buffer (0.02 M, pH 3.5) and acetonitrile in the ratio of 30:70 (v/v) at a flow rate of 1.0 ml/min. The retention times for atenolol, quinidine, propranolol, verapamil and BPQ were 4.30, 5.96, 6.55, 7.98 and 8.54 min, respectively. The calibration curves were linear (correlation coefficient > or =0.996) in the selected range of each analyte. The method is specific and sensitive with limit of quantitation of 15 microg/ml for atenolol, 0.8 microg/ml for quinidine, 5 microg/ml for propranolol, 10 microg/ml for verapamil and 200 ng/ml for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and all the analytes were found to be stable. This method is simple, reliable and can be routinely used for accurate permeability characterization.
A simple, sensitive and specific reversed-phase high-performance liquid chromatographic method with UV detection at 251 nm was developed for quantitation of buparvaquone (BPQ) in human and rabbit plasma. The method utilizes 250 microL of plasma and sample preparation involves protein precipitation followed by solid-phase extraction. The method was validated on a C18 column with mobile phase consisting of ammonium acetate buffer (0.02 m, pH 3.0) and acetonitrile in the ratio of 18:82 (v/v) at a flow rate of 1.1 mL/min. The calibration curves were linear (correlation coefficient>or=0.998) in the selected range. The method is specific and sensitive with limit of quantitation of 50 ng/mL for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and BPQ was found to be stable. Partial validation studies were carried out using rabbit plasma and intra- and inter-day precision and accuracy were within 7%. This method is simple, reliable and can be routinely used for preclinical pharmacokinetic studies for BPQ.
A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artemether (ARM), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARM and DQHS were analysed using a Lichrocart/Lichrosphere 100 CN stainless-steel column and a mobile phase of acetonitrile-0.05 M acetic acid (15:85, v/v) adjusted to pH 5.0, and electrochemical detection in the reductive mode. The mean recovery of ARM and DQHS over a concentration range of 30-120 ng/ml was 81.6% and 93.4%, respectively. The within-day coefficients of variation were 0.89-7.01% for ARM and 3.45-8.11% for DQHS. The day-to-day coefficients of variation were 2.06-8.43% and 3.22-6.33%, respectively. The minimum detectable concentration for ARM and DQHS in plasma was 2.5 and 1.25 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.
A rapid and selective high-performance liquid chromatographic assay for determination of a new antimalarial drug (benflumetol, BFL) is described. After extraction with hexane-diethyl ether (70:30, v/v) from plasma, BFL was analysed using a C18 Partisil 10 ODS-3 reversed-phase stainless steel column and a mobile phase of acetonitrile-0.1 M ammonium acetate (90:10, v/v) adjusted to pH 4.9 with ultraviolet detection at 335 nm. The mean recovery of BFL over a concentration range of 50-400 ng/ml was 96.8 +/- 5.2%. The within-day and day-to-day coefficients of variation were 1.8-4.0 and 1.8-4.2%, respectively. The minimum detectable concentration in plasma for BFL was 5 ng/ml with a C.V. of less than 10%. This method was found to be suitable for clinical pharmacokinetic studies.
The aim of this study was to prepare a lipid-based self-microemulsifying drug delivery system (SMEDDS) to increase the solubility and oral bioavailability of a poorly water-soluble compound, buparvaquone (BPQ).
A new approach using a simple solid-phase extraction technique has been developed for the determination of pyronaridine (PND), an antimalarial drug, in human plasma. After extraction with C18 solid-phase sorbent, PND was analyzed using a reverse phase chromatographic method with fluorescence detection (at lambda(ex)=267 nm and lambda(em)=443 nm). The mean extraction recovery for PND was 95.2%. The coefficient of variation for intra-assay precision, inter-assay precision and accuracy was less than 10%. The quantification limit with fluorescence detection was 0.010 microg/mL plasma. The method described herein has several advantages over other published methods since it is easy to perform and rapid. It also permits reducing both, solvent use and sample preparation time. The method has been used successfully to assay plasma samples from clinical pharmacokinetic studies.
With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile-acetic acid (0.05M adjusted to pH 5.2 with 1.00M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile-KH(2)PO(4) (pH 4.0, 0.05M) (11:89, v/v) as mobile phase at flow rate 1.00ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50-1400ng/ml plasma. The accuracies of the determination of all the analytes are 96.8-103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20ng/ml and limit of detection is 8ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS-AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS-AQ co-formulation.