Displaying all 2 publications

Abstract:
Sort:
  1. Chen WH, Chang CM, Mutuku JK, Lam SS, Lee WJ
    Environ Res, 2021 06;197:110975.
    PMID: 33689824 DOI: 10.1016/j.envres.2021.110975
    The deposition phenomenon of microparticle and SAR-CoV-2 laced bioaerosol in human airways is studied by Taguchi methods and response surface methodology (RSM). The data used herein is obtained from simulations of airflow dynamics and deposition fractions of drug particle aerosols in the downstream airways of asthma patients using computational fluid dynamics (CFD) and discrete particle motion (DPM). Three main parameters, including airflow rate, drug dose, and particle size, affecting aerosol deposition in the lungs of asthma patients are examined. The highest deposition fraction (DF) is obtained at the flow rate of 45 L min-1, the drug dose of 200 μg·puff-1, and the particle diameter of 5 μm. The optimized combination of levels for the three parameters for maximum drug deposition is performed via the Taguchi method. The importance of the influencing factors rank as particle size > drug dose > flow rate. RSM reveals that the combination of 30 L min-1, 5 μm, 200 μg·puff- has the highest deposition fraction. In part, this research also studied the deposition of bioaerosols contaminated with the SAR-CoV-2 virus, and their lowest DF is 1.15%. The low DF of bioaerosols reduces the probability of the SAR-CoV-2 virus transmission.
  2. Chen WH, Chang CM, Mutuku JK, Lam SS, Lee WJ
    J Hazard Mater, 2021 08 15;416:125856.
    PMID: 34492805 DOI: 10.1016/j.jhazmat.2021.125856
    Inhalation of aerosols such as pharmaceutical aerosols or virus aerosol uptake is of great concern to the human population. To elucidate the underlying aerosol dynamics, the deposition fractions (DFs) of aerosols in healthy and asthmatic human airways of generations 13-15 are predicted. The Navier-stokes equations governing the gaseous phase and the discrete phase model for particles' motion are solved using numerical methods. The main forces responsible for deposition are inertial impaction forces and complex secondary flow velocities. The curvatures and sinusoidal folds in the asthmatic geometry lead to the formation of complex secondary flows and hence higher DFs. The intensities of complex secondary flows are strongest at the generations affected by asthma. The DF in the healthy airways is 0%, and it ranges from 1.69% to 52.93% in the asthmatic ones. From this study, the effects of the pharmaceutical aerosol particle diameters in the treatment of asthma patients can be established, which is conducive to inhibiting the inflammation of asthma airways. Furthermore, with the recent development of COVID-19 which causes pneumonia, the predicted physics and effective simulation methods of bioaerosols delivery to asthma patients are vital to prevent the exacerbation of the chronic ailment and the epidemic.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links