Climate change has been predicted to influence the marine phytoplankton community and its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that catalyses the relatively slow interconversion between HCO3- and CO2. Early results indicated that sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of CO2 on a global scale by 15%, an addition of 0.37 Pg C year-1. Despite its central role in the marine carbon cycle, only in recent years have new analytical techniques allowed the first quantifications of eCA and its activity in the oceans. This opens up new research areas in the field of marine biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and concentrations are affected by environmental stressors such as ocean acidification and UV radiation as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in biomonitoring programmes and could be used for future response prediction studies in changing oceans. This review aims to identify the current knowledge and gaps where new research efforts should be focused to better determine the potential feedback of phytoplankton via eCA in the marine carbon cycle in changing oceans.
Terrestrial anionic surfactants (AS) enter the marine environment through coastal region. Despite that, in general limited knowledge is available on the coastal AS transfer pathway. This paper aims to assess the distributions and exchange of AS in the Peninsular Malaysia coastal environments, adjacent to the southern waters of South China Sea and Strait of Malacca. An assessment case study was conducted by a review on the available data from the workgroup that span between the year 2008 and 2019. The findings showed that AS dominated in the sea surface microlayer (SML, 57%) compared to subsurface water (SSW, 43 %). AS were also found to have dominated in fine mode (FM, 71 %) compared to coarse mode (CM, 29 %) atmospheric aerosols. SML AS correspond to the SSW AS (p < 0.01); however, highest enrichment factor (EF) of the SML AS was not consistent with highest SSW AS. Direct AS exchange between SML and FM and CM was not observed. Furthermore, the paper concludes AS mainly located in the SML and FM and could potentially be the main transfer pathway in the coastal environment.
This article describes the abundance of phytoplankton community structures in Port Dickson, Negeri Sembilan and Pulau Tinggi, Johor during the Southwest and Northeast Monsoons and includes data from 48 selected sampling sites collected between July and December 2023. The seawater samples from 1-meter depth were obtained by using a Niskin water sampler, concentrated in a 50 ml centrifuge tube and immediately preserved with Lugol's iodine solution. The data include phytoplankton density (cell L-1), the total density of phytoplankton in each station, and the total number of genera obtained in every station. Additional data are presented, including chlorophyll-a concentration, as a proxy for biomass and photosynthetic active radiation. This article presents data on 30 genera, including unidentified genera, as well as the percentage of the main community group.
The sea surface microlayer (SML), particularly in monsoon-influenced regions, remains largely unexplored. This study aims to determine the concentrations, enrichment, and factors controlling the enrichment processes of surface-active substances (SASs), which include surfactants, dissolved monosaccharides (MCHOs), polysaccharides (PCHOs), total dissolved carbohydrates (TDCHOs), and transparent exopolymer particles (TEPs) around the coastal area of Malaysian Peninsula. The SML samples and underlying water (ULW) from a depth of 1 m were collected during the southwest (August and September 2023) and northeast (November 2023) monsoons. Surfactants, TEPs, and dissolved carbohydrates were measured spectrometrically using methylene blue, the Alcian blue assay, and 2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ), respectively. The results showed that stations influenced by anthropogenic activities were generally enriched with surfactants (Enrichment factor, EF = 1.40 ± 0.91) and carbohydrate species (TDCHOs = 1.38 ± 0.28, MCHOs = 1.54 ± 0.57, PCHOs = 1.85 ± 1.43). However, TEP enrichment was not observed in our study (EF = 0.68 ± 0.24). The SASs in the SML were correlated with their underlying concentrations, implying that transport from underlying water could be a major source of substances in the SML. High carbohydrate concentrations and enrichment were found during the northeast monsoon, implying that rain and runoff water affect concentrations in the SML. Besides, the enrichment of SASs persists at moderate wind speeds and is depleted at high wind speeds.