Many minerals and compounds show thermoluminescence (TL) properties but only a few of them can meet the requirements of an ideal dosimeter. Several phosphate materials have been studied for low-dose dosimetryin recent times. Among the various phosphates, ABPO4-type material shows interesting TL properties. In this study, an ABPO4-type (A = Lithium, B=Calcium) phosphor is synthesized using a modified solid-state diffusion method. Temperature is maintained below 800 °C in every step of phosphor preparation to obtain the pure phase of Lithium calcium phosphate (LiCaPO4). The purpose of this work is to synthesize LiCaPO4 using a simple method, examine its structural and luminescence properties in order to gain a deeper understanding of its TL characteristics. The general TL properties, such as TL glow curve, dose linearity, sensitivity, and fading, are investigated. Additionally, this study aims to determine various kinetic parameters through Glow Curve Deconvolution (GCD) method using the Origin Lab software together with the Chen model. XRD analysis confirmed the phase purity of the phosphor with a rhombohedral structure. Lattice parameters, unit cell volume, grain size, dislocated density, and microstrain were also calculated from XRD data. Raman analysis and Fourier Transform Infrared analysis were used to collect information about molecular bonds, vibrations, identity, and structure of the phosphor. To investigate TL properties and associated kinetic parameters, the phosphor was irradiated with 6.0 MV (photon energy) and 6.0 MeV (electron energy) from a linear accelerator for doses ranging from 0.5 Gy to 6.0 Gy. For both photon and electron energy, TL glow curves have two identical peaks near 200 °C and 240 °C.The TL glow curves for 0.5 Gy-6 Gy are deconvoluted, then fitted with the appropriate model and then calculated the kinetic parameters. Kinetic parameters such as geometric factor (μg), order of kinetics, activation energy (E), and frequency factor (s) are obtained from Chen's peak shape method. The dose against the TL intensity curve shows that the response is almost linear in the investigated dose range. For photon and electron energy, the phosphor is found to be the most sensitive at 2.0 Gy and 4.0 Gy, respectively. The phosphor shows a low fading and after 28 days of exposure, it shows a signal loss of better than 3%. The studied TL properties suggest the suitability of LiCaPO4 in radiation dosimetry and associated fields.
In clinical settings, standard dosimeters might miss radiation mishaps. Retrospective dosimeters could help to track personnel (such as patients and other staff who don't wear dosimeters) exceeding safe limits and assess long-term exposure trends. This study has investigated key thermoluminescence (TL) dosimetric characteristics, including the glow curve structure, dose-response, energy dependence, sensitivity and fading of various safety glasses that are used as screen protectors of smartphones subjected to photon irradiation. Among the studied glasses, the HD Anti-Peep safety glass for iPhone has been found to exhibit a linear dose-response with a regression coefficient of 99% within the dose range of 2-10 Gy. Moreover, all the safety glasses showed independence with respect to photon energy of 6 MV and 10 MV. The TL glow curves of the samples showed a broad glow peak between 125 °C and 325 °C at 10 Gy. The TL kinetic parameters of the safety glasses were also studied by analyzing the glow curves using the peak shape and initial rise method. The geometric factor (μg) is found to be within the range of 0.43-0.53, which indicates the suitability of applying Chen's general-order formula to calculate the kinetic parameters such as activation energy, frequency factor and trap lifetime. The activation energy (E) and frequency factor (s) are found in the range of 0.31-0.54 eV and 4.55 × 103 to 2.12 × 106 s-1 respectively obtained via the peak shape method. The relatively long trap lifetime and observed thermoluminescence features indicate that the HD Anti-Peep safety glass offers a better option to estimate dose retrospectively to ensure the safety of human health.