Displaying all 5 publications

Abstract:
Sort:
  1. Huixing Liang, Aihui Chen, Zhaoxia Li, Muhammad Aqeel Ashraf, Cheng Ding
    Sains Malaysiana, 2016;45:129-134.
    In order to explore the response of the soil microbial community to 1,2-dichlorobenzene exposure in Wetland soil, a short-term (7 weeks) mesocosm study was conducted at four 1,2-dichlorobenzene concentrations of (100, 400 and 800) μg g -1. Dry soil, sterile and unsterile controls were also compared. The results obtained showed a significant effect of 1,2-dichlorobenzene on the development of bacterial populations in soils contaminated with different concentrations of 1,2-dichlorobenzene at the early time after application. In general, however, the number of populations of the same soil sample treated with the same concentration of 1,2-dichlorobenzene differed significantly with the increasing incubation time within the early 5 weeks. The scale of differences in banding patterns-showed that the microbial community structures of 1,2-dichlorobenzene-treated and non-1,2-dichlorobenzene-treated soils were not significantly different after 7 weeks of incubation. DNA in application-responsive bands from the 1,2-dichlorobenzene treatments was recovered and amplified using the universal primers. PCR products were recovered and cloned into pGEM-T Easy (Promega) and two clones were obtained. The two clones were sequenced using the automated Model 3730 DNA sequencing system. The two cloned sequences had very high similarities to an uncultured bacterium reported previously in the database of NCBI.
  2. Sumaira Naeem, Muhammad Aqeel Ashraf, Misni Bin Misran, Lik Voon Kiew, Lip Yong Chung
    Sains Malaysiana, 2016;45:71-77.
    The aimed of the present study was to evaluate the liposomal formulation regarding its hydrophobicity. The evaluation studies were done based on the amphiphilic nature of the phospholipid liposomes. This paper highlights the importance of such type of lipid based carriers by encapsulation hydrophobic and hydrophilic drug models. Crystal violet and Nile red were used to represent hydrophilic and hydrophobic moieties before moving to pharmaceutical implications. The formulated liposomes were compared for their hydrophobicity using percent encapsulation efficiencies. The purpose of this formulation was to mimic the red blood cells. The average particle size of 120±25.1 and zeta potential of -10.2±1.4 were in good agreement with reported characteristics of the red blood cells. Per cent encapsulation efficiency for crystal violet was more obvious with a value of 68.1 as compared to 36.5% for Nile red. The prepared liposomes were quite stable for a period of one month. Our findings reflect the fate of our system more suitable for hydrophilic drugs under the given set of formulation parameters.
  3. Jian Yang, Qiao Wang, Shengxian Liang, Jing Guo, Muhammad Aqeel Ashraf
    Sains Malaysiana, 2017;46:2149-2162.
    According to the basic rules and characteristics of the gold-polymetallic deposits of Beiya gold mine area in terms of mineralization and ore controlling, it is concluded that skarn deposit is the main ore deposit type in this area and the geological conditions are analyzed by the statistics of the physical parameters. Then, the tectonic, rocks, stratum, ore geophysical models have been treated by the forward modeling numerical simulation and the results are analyzed comprehensively. Based on the forward modeling results, combined with the relevant physical differences, the principle and exploration method test and research for the comprehensive geophysical exploration technology has been carried out, covering the induced polarization and magnetic prospecting for the ore body as well as the indirect geophysical exploration method by means of plane gravity data, audio-magnetotelluric sounding for rock mass and tectonics, the mineralization mode-physical forward modeling - geophysical exploration mode has been established and good results have been achieved. Therefore, a location forecast method has been put forward for the concealed skarn type Fe-Au deposit which is adaptive to the mineralized geological background of Beiya and other similar areas.
  4. Jiading Wang, Tianfeng Gu, Jianbin Wang, Yuanjun Xu, Peng Chen, Muhammad Aqeel Ashraf
    Sains Malaysiana, 2017;46:2049-2059.
    The development degree of fissure water in underground rock is a great trouble to the construction of railway tunnel, which will cause a series of environmental geological problems. Take the surrounding rock-section of the typical red clay in Lvliang-Mt. railway tunnel below the underground water level as an example, several aspects about the red clay surrounding rock will be researched, including pore water pressure, volume moisture content, stress of surrounding rock, vault subsidence and horizontal convergence through the field monitoring. Taking into account the importance of railway tunnel engineering, the large shear test of red clay was carried out at the construction site specially and the reliable situ shear strength parameters of surrounding rock will be obtained. These investigations and field tests helped to do a series of work: Three dimensional finite element numerical model of railway tunnel will be established, the deformation law of the red clay surrounding rock will be investigated, respectively, for the water-stress coupling effect and without considering it, the variation of the pore water pressure during excavation, the influence degree about the displacement field and stress field of water-stress coupling on red clay-rock will be discussed and the mechanism of the surrounding rock deformation will be submitted. Finally, the paper puts forward the feasible drainage scheme of the surrounding rock and the tunnel cathode. The geological environment safety of tunnel construction is effectively protected.
  5. Hua Yang, Jinhua Fu, Yujiang Shi, Yumei Cheng, Haitao Zhang, Zhiqiang Mao, et al.
    Sains Malaysiana, 2016;45:9-18.
    The origin of formation water salinity variation in Chang 9 stratum, Jiyuan oilfield, Ordos basin is studied here. 91 formation water samples show that water salinity is characterized by a wide range and a complex plane distribution. In order to find out the main cause of such distribution complexity and reveal the relationship between formation water and evolution of reservoir traps, core data, chemical analysis result of formation water and log data are analyzed from perspectives of diagenesis and tectonism. And then, their characteristics are presented as the followings. In high salinity area, tuffaceous mudstone interlayer is found growing. Besides, the condition of Na++K+ is opposite to that of Ca2+, for its rate of concentration increase slows down with total salinity accumulating. In low salinity area, while, with fracture and faults developing, some formation water of CaCl2 type turns into MgCl2, NaHCO3 or Na2SO4 type. The cause is thus proposed to be composed of two aspects. One covers tuff alteration and later diagenesis for the high salinity. To be specific, montmorillonite, developed from tuff alteration, absorbs cation selectively and then ions migrate, during which more Na++K+ get lost, while more Ca2+ reserved. Afterwards, those reserved Ca2+ get released with montmorillonite transforming to illite, which results in a loss of Na++K+ and accumulation of Ca2+. Lots of ions are released into formation water during that process and later diagenetic process, which leads to the high water salinity. The other aspect is the development of faults and fractures, through which, the upper low salinity formation water gets connected. And that is the main cause of low salinity. At last, geological significance is discussed from two angles. Firstly, tuff alteration and later diagenesis are pivotal to reservoir reconstruction; and secondly, faults and fractures play an important role in oil transportation and storage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links