Displaying all 2 publications

Abstract:
Sort:
  1. Kamelian K, Montoya V, Olmstead A, Dong W, Harrigan R, Morshed M, et al.
    Sci Rep, 2019 Nov 11;9(1):16433.
    PMID: 31712570 DOI: 10.1038/s41598-019-52613-8
    In 2018, the World Health Organization identified the Zika virus (ZIKV) as a pathogen that should be prioritized for public health research due to its epidemic potential. In this study, whole-genome sequencing (WGS) of travel-acquired ZIKV infections was used to examine the limitations of phylogenetic analysis. WGS and phylogenetic analysis were performed to investigate geographic clustering of samples from five Canadians with travel-acquired ZIKV infections and to assess the limitations of phylogenetic analysis of ZIKV sequences using a phylogenetic cluster approach. Genomic variability of ZIKV samples was assessed and for context, compared with hepatitis C virus (HCV) samples. Phylogenetic analysis confirmed the suspected region of ZIKV infection for one of five samples and one sample failed to cluster with sequences from its suspected country of infection. Travel-acquired ZIKV samples depicted low genomic variability relative to HCV samples. A floating patristic distance threshold classified all pre-2000 ZIKV sequences into separate clusters, while only Cambodian, Peruvian, Malaysian, and South Korean sequences were similarly classifiable. While phylogenetic analysis of ZIKV data can identify the broad geographical region of ZIKV infection, ZIKV's low genomic variability is likely to limit precise interpretations of phylogenetic analysis of the origins of travel-related cases.
  2. Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, et al.
    Biomed Res Int, 2014;2014:307519.
    PMID: 25165697 DOI: 10.1155/2014/307519
    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links