Displaying all 2 publications

Abstract:
Sort:
  1. Buglie, William L. N., Mohd Shahril bin Osman
    MyJurnal
    The works in this study is to investigate and understand the nature of Acacia mangium axial fatigue strengths under repeated stress. Acacia mangium trees were cut to produce oven-dried Small Clear Specimens that were then tested until fracture in parallel to the grain direction. This was carried out in order to discover its Ultimate Tensile Strength, which was later identified as 143.87 MPa, in parallel to the grain direction (0° grain angle). In the next phase, specimens were tested for fatigue strengths in repeated-tensile sinusoidal waveform loading at 100 Hz frequency. The stress levels for this test were at the ratios of 80, 60, 40, 30, 20 and 10% of the Ultimate Tensile Strength (0° grain angle) for the construction of Life (N) - Stress (S) plots and empirical correlation. It was observed that the Acacia Mangium N-S (Wöhler) plots have an exponential correlation with the N – intercept of vertical axis at five (5) million cycles, while the intercept of horizontal, S – axis, was at 143.87 MPa. The study also observed that Acacia mangium achieves 106 life cycles at 10% stress level. For this reason, it is concluded that the material has a fatigue endurance limit at 10% of the Ultimate Tensile Strength for 0° grain angle.
  2. Buglie, William L. N., Mohd Shahril bin Osman
    MyJurnal
    The purpose of this study is to identify the Osgood’s coefficient of species and the Modified Osgood Equation for Acacia mangium. Acacia mangium trees were cut to produce oven-dried Small Clear Specimens that were then tested until fracture. Results were gathered from static tensile tests in the direction parallel (0° angle), perpendicular (90° angle) and at 30° angle to the wood grain. All test results confirmed that the Acacia mangium wood is brittle as there was no obvious necking observed on the test specimens. From the static testing, the Osgood’s coefficient of species for Acacia mangium, (a), is identified algebraically to be 0.49. Acacia mangium, by nature, has a significant difference in the strengths parallel and perpendicular to the grain line. The finalized results of the Ultimate Tensile Strength for 15-year old Acacia mangium demonstrated that the Ultimate Tensile Strength in parallel and perpendicular to the grain directions are 143.87 MPa and 6.32 MPa respectively, while the Ultimate Tensile Strength at 30° grain angle is 32.985 MPa. An extreme reduction of 95.6% of the Ultimate Tensile Strength was identified between 0° and 90° grain angles with a decreased value from 143.87 MPa to 6.32 MPa.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links