Displaying all 2 publications

Abstract:
Sort:
  1. Mokhtar NM, Jaafar NM, Alfian E, Mohd Rathi ND, Abdul Rani R, Raja Ali RA
    Acta Gastroenterol Belg, 2021 12 30;84(4):585-591.
    PMID: 34965040 DOI: 10.51821/84.4.009
    Background: Gut dysbiosis is linked with the pathophysiology of irritable bowel syndrome (IBS). Manipulation of intestinal microbiota using cultured milk drinks may stimulate the immune system, hence providing beneficial support in IBS treatment. This study aimed to investigate the effects of cultured milk drink on clinical symptoms, intestinal transit time (ITT), fecal pH and cytokines in constipation-predominant IBS (IBS-C) as compared to non-IBS participants.

    Methods: Each recruited participant was given three bottles of 125 ml cultured milk drink containing 109 cfu Lactobacillus acidophilus LA-5 and Lactobacillus paracasei L. CASEI-01 consumed daily for 30 days. At pre- and post-30-day consumption, fecal pH, ITT, clinical symptoms, IL-6, IL-8 and TNF-α levels were assessed. Seventy-seven IBS-C and 88 non-IBS were enrolled.

    Results: Post-consumption, 97.4% of IBS-C experienced improvements in constipation-related symptoms supported by the significant reduction of ITT and decreased fecal pH (p<0.05). All pro-inflammatory cytokines were significantly lower in post as compared to pre-consumption of cultured milk drinks in IBS-C (p<0.05). There was significant reduction in the IL-8 and TNF-α levels in post- as compared to pre-consumption for the non-IBS (p<0.05).

    Conclusion: Cultured milk drink taken daily improved clinical symptoms and reduced cytokines, hence should be considered as an adjunctive treatment in IBS-C individuals.

  2. Razali NN, Raja Ali RA, Muhammad Nawawi KN, Yahaya A, Mohd Rathi ND, Mokhtar NM
    World J Gastroenterol, 2023 Oct 28;29(40):5543-5556.
    PMID: 37970476 DOI: 10.3748/wjg.v29.i40.5543
    BACKGROUND: Phosphatidylinositol-3-kinases (PI3K) is a well-known route in inflammation-related cancer. Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis (UC) and colorectal cancer (CRC) with colitis-associated cancer (CAC). PI3K/AKT pathway has been recommended as a potential additional therapeutic option for CRC due to its substantial role in modifying cellular processes. Buparlisib is a pan-class I PI3K inhibitor previously shown to reduce tumor growth.

    AIM: To investigate the regulation of rs10889677 and the role of buparlisib in the PI3K signaling pathway in CAC pathogenesis.

    METHODS: Genomic DNA from 32 colonic samples, including CAC (n = 7), UC (n = 10) and CRC (n = 15), was sequenced for the rs10889677 mutation. The mutant and wildtype fragments were amplified and cloned in the pmirGLO vector. The luciferase activity of cloned vectors was assessed after transfection into the HT29 cell line. CAC mice were induced by a mixture of a single azoxymethane injection and three cycles of dextran sulphate sodium, then buparlisib was administered after 14 d. The excised colon was subjected to immunohistochemistry for Ki67 and Cleaved-caspase-3 markers and quantitative real-time polymerase chain reaction analysis for Pdk1 and Sgk2.

    RESULTS: Luciferase activity decreased by 2.07-fold in the rs10889677 mutant, confirming the hypothesis that the variant disrupted miRNA binding sites, which led to an increase in IL23R expression and the activation of the PI3K signaling pathway. Furthermore, CAC-induced mice had a significantly higher disease activity index (P < 0.05). Buparlisib treatment significantly decreased mean weight loss in CAC-induced mice (P < 0.05), reduced the percentage of proliferating cells by 5%, and increased the number of apoptotic cells. The treatment also caused a downward trend of Pdk1 expression and significantly decreased Sgk2 expression.

    CONCLUSION: Our findings suggested that the rs10889677 variant as a critical initiator of the PI3K signaling pathway, and buparlisib had the ability to prevent PI3K-non-AKT activation in the pathophysiology of CAC.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links