Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Kashim MIA, Abdul Haris AA, Hasim NA, Abd Mutalib S, Anuar N
    Foods, 2022 Oct 17;11(20).
    PMID: 37430984 DOI: 10.3390/foods11203235
    Meat culturing technology goes beyond laboratory research and materialises in the market. Nonetheless, this technology has raised concerns among Muslim consumers worldwide due to its medium, especially foetal bovine serum (FBS), which originates from blood. Thus, the aim of this research was to determine the halal status of cultured meat by detecting species-specific DNA of bovine serum as one of the media used during meat production. Polymerase chain reaction (PCR) analysis was conducted by targeting mitochondrial cytochrome oxidase II (COII) gene sequences, producing a 165 bp amplicon. The sequences of the primers used were Bovine-F, 5'-CAT CAT AGC AAT TGC CAT AGT CC-3' and Bovine-R, 5'-GTA CTA GTA GTA TTA GAG CTA GAA TTA G-3'. DNA extraction was conducted using a QIAGEN Blood and Tissue™ commercial kit. The presence study also included a literature review on the Istihalah (transformation) concept in order to determine the halal status of cultured meat. The results revealed that bovine DNA was detected in all samples tested using PCR analysis. Therefore, Istihalah tammah (perfect transformation) does not occur due to the ability of PCR analysis to detect bovine DNA in FBS and is prohibited according to Shariah law.
  2. Mohd Nor NH, Mansor NI, Mohd Kashim MIA, Mokhtar MH, Mohd Hatta FA
    Int J Mol Sci, 2023 Jul 21;24(14).
    PMID: 37511524 DOI: 10.3390/ijms241411763
    Stem cells derived from human exfoliated deciduous teeth (SHED) have emerged as an alternative stem cell source for cell therapy and regenerative medicine because they are readily available, pose fewer ethical concerns, and have low immunogenicity and tumourigenicity. SHED offer a number of advantages over other dental stem cells, including a high proliferation rate with the potential to differentiate into multiple developmental lineages. The therapeutic effects of SHED are mediated by multiple mechanisms, including immunomodulation, angiogenesis, neurogenesis, osteogenesis, and adipogenesis. In recent years, there is ample evidence that the mechanism of action of SHED is mainly due to its paracrine action, releasing a wide range of soluble factors such as cytokines, chemokines, and trophic factors (also known as 'secretome') into the local tissue microenvironment to promote tissue survival and recovery. This review provides an overview of the secretome derived from SHED and highlights the bioactive molecules involved in tissue regeneration and their potential applications in regenerative medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links