Displaying all 2 publications

Abstract:
Sort:
  1. Mohamad Yusoff MA, Abdul Hamid AA, Mohammad Bunori N, Abd Halim KB
    J Mol Graph Model, 2018 Jun;82:137-144.
    PMID: 29730487 DOI: 10.1016/j.jmgm.2018.04.010
    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane.
  2. Zifruddin AN, Mohamad Yusoff MA, Abd Ghani NS, Nor Muhammad NA, Lam KW, Hassan M
    Comput Biol Chem, 2023 Apr;103:107811.
    PMID: 36645937 DOI: 10.1016/j.compbiolchem.2023.107811
    Metisa plana (Lepidoptera: Psychidae) bagworm is a leaf-eater caterpillar ubiquitously found as a damaging pest in oil palm plantations, specifically in Malaysia. Various strategies have been implemented, including the usage of chemical insecticides. However, the main challenges include the development of insecticide resistance and its detrimental effects on the environment and non-target organisms. Therefore, a biorational insecticide is introduced by targeting the juvenile hormone (JH) biosynthetic pathway, which is mainly present in the insect and vital for the insect's growth, diapause, metamorphosis, and adult reproduction. This study aimed to investigate the potential inhibitor for the rate-limiting enzyme involved in the JH pathway known as farnesol dehydrogenase. A 255 amino acids sequence encoded for the putative M. plana farnesol dehydrogenase (MpFolDH) open reading frame had been identified and isolated. The three-dimensional structure of MpFolDH was predicted to have seven β- sheets with α-helices at both sides, showing typical characteristics for classical short-chain dehydrogenase and associated with oxidoreductase activity. Then, the ensemble-based virtual screening was conducted based on the ZINC20 database, in which 43 768 compounds that fulfilled pesticide-likeness criteria were screened by site-specific molecular docking. After a short molecular dynamics simulation (5 ns) was conducted towards 102 compounds, only the top 10 compounds based on their most favourable binding energy were selected for a more extended simulation (100 ns). Based on the protein-ligand stability, protein compactness, residues rigidity, binding interaction, binding energy throughout the 100 ns simulation, and physicochemical analysis, ZINC000408743205 was selected as a potential inhibitor for this enzyme. Amino acids decomposition analysis indicates Ile18, Ala95, Val198 and Val202 were the critical contributor residues for MpFolDH-inhibitors(s) complex.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links