METHODS: Tobramycin (30 mg/mL) was incorporated into CPB by dipping method and the efficacy of TOB-loaded CPB was studied in a rabbit osteomyelitis model. For juxtaposition, CPB with and without TOB were prepared. Twenty-five New Zealand white rabbits were grouped (n = 5) as sham (group 1), TOB-loaded CPB without S. aureus (group 2), S. aureus only (group 3), S. aureus + CPB (group 4), and S. aureus + TOB-loaded CPB (group 5). Groups infected with S. aureus followed by CPB implantation were immediately subjected to surgery at the mid-shaft of the tibia. After 28 days post-surgery, all rabbits were euthanized and the presence or absence of chronic osteomyelitis and the extent of architectural destruction of the bone were assessed by radiology, bacteriology and histological studies.
RESULTS: Tobramycin-loaded CPB group potentially inhibited the growth of S. aureus causing 3.2 to 3.4 log10 reductions in CFU/g of bone tissue compared to the controls. Untreated groups infected with S. aureus showed signs of chronic osteomyelitis with abundant bacterial growth and alterations in bone architecture. The sham group and TOB-loaded CPB group showed no evidence of bacterial growth.
CONCLUSIONS: TOB-incorporated into CPB for local bone administration was proven to be more successful in increasing the efficacy of TOB in this rabbit osteomyelitis model and hence could represent a good alternative to other formulations used in the treatment of osteomyelitis.
METHODS: We performed a systematic search using PubMed, Scopus, Cochrane Library, Web of Science for randomised controlled trials (RCTs), published until March 17, 2021. The quality assessment was carried out using the Cochrane Collaboration risk of bias tool. The Q-test and I 2 tests were used for the determination of heterogeneity of the included studies. Data were pooled using a random-effects model, and weighted mean difference (WMD) was used for the overall effect size.
RESULTS: Pooled findings of the five RCTs demonstrated that ginger supplementations had significantly reduced hs-CRP (WMD -0.42 mg/L; 95% CI, -0.78, -0.05, P = 0.03), TNF-α (-2.13 pg/mL; 95% CI: -3.41, -0.86, P = 0.001), and IL-6 (WMD: -0.61 pg/mL; 95% CI: -0.92, -0.30, P = 0.001) levels in patients with T2DM. The quality assessment of the studies showed that all of the included studies were at high risk of bias.
CONCLUSIONS: The meta-analysis shows that ginger supplementations reduced inflammatory parameters in patients with T2DM. Nonetheless, the reduction is relatively small, and its meaningful clinical effects are unknown. Future high-quality RCTs are needed to confirm the beneficial effects of ginger supplementation in patients with T2DM.
METHODS: Forty-five postnatal Sprague-Dawley rat pups, 7-15 days old were divided into nine age groups (P7-P15). Five pups were allocated to each group. The rats were sacrificed and tibia and metatarsal bones were harvested. Bone lengths were measured after 0, 24, 48, and 72 hours of ex vivo incubation. Histology of bones was carried out, and GP lengths and chondrocyte densities were determined.
RESULTS: There were significant differences in bone length among the age groups after 0 and 72 hours of incubation. Histological sectioning was possible in metatarsal bone from all age groups, and in tibia from 7- to 13-day-old rats. No significant differences in tibia and metatarsal GP lengths were seen among different age groups at 0 and 72 hours of incubation. Significant differences in chondrocyte densities along the epiphyseal GP of the bones between 0 and 72 hours of incubation were observed in most of the age groups.
CONCLUSION: Ex vivo growth of tibia and metatarsal bones of rats aged 7-15 days old is possible, with percentage growth rates of 23.87 ± 0.80% and 40.38 ± 0.95% measured in tibia and metatarsal bone, respectively. Histological sectioning of bones was carried out without the need for decalcification in P7-P13 tibia and P7-P15 metatarsal bone. Increases in chondrocyte density along the GP influence overall bone elongation.