This study employs a comparative analysis method to examine variations in food waste (FW) generation between developed and developing nations, focusing on income levels, population growth rates, and community engagement in waste management. Quantitative data from Taiwan, Malaysia, and Bangladesh are comprehensively analyzed using regression analysis and descriptive statistics. Results indicate that Taiwan, with its stringent regulatory frameworks and advanced recycling technologies, generates significantly less FW per capita compared to Malaysia and Bangladesh. Malaysia shows moderate levels of FW reduction efforts, supported by varying degrees of community participation, whereas Bangladesh faces challenges with both regulatory enforcement and technological adoption. The study proposes an integrative waste management model emphasizing regulatory compliance rates, community participation metrics, and technology diffusion indices to effectively address FW challenges. These findings underscore the importance of tailored waste management strategies aligned with economic and demographic contexts of developing nations. Policymakers and waste management practitioners can leverage these insights to establish targeted FW reduction goals and enhance recycling initiatives. The research highlights the urgency of integrated waste management approaches to mitigate environmental and public health risks associated with FW mismanagement, advocating for evidence-based policies supported by robust quantitative analysis.
In this paper, the performance of an active neutral point clamped (ANPC) inverter is evaluated, which is developed utilizing both silicon (Si) and gallium trioxide (Ga2O3) devices. The hybridization of semiconductor devices is performed since the production volume and fabrication of ultra-wide bandgap (UWBG) semiconductors are still in the early-stage, and they are highly expensive. In the proposed ANPC topology, the Si devices are operated at a low switching frequency, while the Ga2O3 switches are operated at a higher switching frequency. The proposed ANPC mitigates the fault current in the switching devices which are prevalent in conventional ANPCs. The proposed ANPC is developed by applying a specified modulation technique and an intelligent switching arrangement, which has further improved its performance by optimizing the loss distribution among the Si/Ga2O3 devices and thus effectively increases the overall efficiency of the inverter. It profoundly reduces the common mode current stress on the switches and thus generates a lower common-mode voltage on the output. It can also operate at a broad range of power factors. The paper extensively analyzed the switching performance of UWBG semiconductor (Ga2O3) devices using double pulse testing (DPT) and proper simulation results. The proposed inverter reduced the fault current to 52 A and achieved a maximum efficiency of 99.1%.