Displaying all 2 publications

Abstract:
Sort:
  1. Suhot MA, Hassan MZ, Aziz SA, Md Daud MY
    Polymers (Basel), 2021 Jul 21;13(15).
    PMID: 34371993 DOI: 10.3390/polym13152391
    Recently, because of the rising population, carbon overloading, and environmental distress, human beings have needed to increase awareness and responsibility for the reduction of agricultural waste. The utilization of agricultural waste as a filler material in reinforced polymers is a fascinating discovery. This review paper attempts to study the physical, mechanical, and thermal behavior of rice husk (RH) as a fiber for reinforcing various synthetic polymers, based on recent studies, conducted between 2017 and 2021. It also highlights that advanced modification techniques could further improve the performance of composites by tailoring the physical and chemical substances of the fiber or matrix. The thermal properties, including flame-retardance and thermal behavior, are also discussed. The characteristics of the fiber-matrix interaction between RH and the polymer matrix provide essential insights into the future-ready applications of this agricultural waste fiber. The way forward in researching RH polymer composites is finally reviewed.
  2. Hassan MZ, Roslan SA, Sapuan SM, Rasid ZA, Mohd Nor AF, Md Daud MY, et al.
    Polymers (Basel), 2020 Jun 17;12(6).
    PMID: 32560539 DOI: 10.3390/polym12061367
    The objective of this research is to optimize the alkaline treatment variables, including sodium hydroxide (NaOH) concentration, soaking, and drying time, that influence the mechanical behavior of bamboo fiber-reinforced epoxy composites. In this study, a Box-Behnken design (BBD) of the response surface methodology (RSM) was employed to design an experiment to investigate the mercerization effect of bamboo fiber-reinforced epoxy composites. The evaluation of predicted tensile strength as a variable parameter of bamboo fiber (Bambusa vulgaris) reinforced epoxy composite structures was determined using analysis of variance (ANOVA) of the quadratic model. In this study, a total of 17 experiment runs were measured and a significant regression for the coefficient between the variables was obtained. Further, the triangular and square core structures made of treated and untreated bamboo fiber-reinforced epoxy composites were tested under compressive loading. It was found that the optimum mercerization condition lies at 5.81 wt.% of the NaOH, after a soaking time of 3.99 h and a drying time of 72 h. This optimum alkaline treatment once again had a great effect on the structures whereby all the treated composite cores with square and triangular structures impressively outperformed the untreated bamboo structures. The treated triangular core of bamboo reinforced composites gave an outstanding performance compared to the treated and untreated square core composite structures for compressive loading and specific energy absorbing capability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links