Displaying all 3 publications

Abstract:
Sort:
  1. Mohd-Assaad N, McDonald BA, Croll D
    Environ Microbiol, 2019 08;21(8):2677-2695.
    PMID: 30838748 DOI: 10.1111/1462-2920.14583
    Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
  2. Mohd-Assaad N, McDonald BA, Croll D
    Mol Ecol, 2016 Dec;25(24):6124-6142.
    PMID: 27859799 DOI: 10.1111/mec.13916
    Evolution of fungicide resistance is a major threat to food production in agricultural ecosystems. Fungal pathogens rapidly evolved resistance to all classes of fungicides applied to the field. Resistance to the commonly used azole fungicides is thought to be driven mainly by mutations in a gene (CYP51) encoding a protein of the ergosterol biosynthesis pathway. However, some fungi gained azole resistance independently of CYP51 mutations and the mechanisms leading to CYP51-independent resistance are poorly understood. We used whole-genome sequencing and genome-wide association studies (GWAS) to perform an unbiased screen of azole resistance loci in Rhynchosporium commune, the causal agent of the barley scald disease. We assayed cyproconazole resistance in 120 isolates collected from nine populations worldwide. We found that mutations in highly conserved genes encoding the vacuolar cation channel YVC1, a transcription activator, and a saccharopine dehydrogenase made significant contributions to fungicide resistance. These three genes were not previously known to confer resistance in plant pathogens. However, YVC1 is involved in a conserved stress response pathway known to respond to azoles in human pathogenic fungi. We also performed GWAS to identify genetic polymorphism linked to fungal growth rates. We found that loci conferring increased fungicide resistance were negatively impacting growth rates, suggesting that fungicide resistance evolution imposed costs. Analyses of population structure showed that resistance mutations were likely introduced into local populations through gene flow. Multilocus resistance evolution to fungicides shows how pathogen populations can evolve a complex genetic architecture for an important phenotypic trait within a short time span.
  3. Mohd-Assaad N, McDonald BA, Croll D
    Genome Biol Evol, 2018 Apr 01;10(5):1315-1332.
    PMID: 29722810 DOI: 10.1093/gbe/evy087
    Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, respectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions. Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links