Displaying all 4 publications

Abstract:
Sort:
  1. Fatema K, Wan Maznah WO, Isa MM
    Trop Life Sci Res, 2014 Dec;25(2):1-19.
    PMID: 27073596 MyJurnal
    In this study, factor analysis (FA) was applied to extract the hidden factors responsible for water quality variations during both wet and dry seasons. Water samples were collected from six sampling stations (St. 1 Lalang River, St. 2 Semeling River, St. 3 Jagung River, St. 4 Teluk Wang River, St. 5 Gelam River and St. 6 Derhaka River) in the Merbok estuary, Malaysia from January to December 2011; the samples were further analysed in the laboratory. Correlation analysis of the data sets showed strong correlations between the parameters. Nutrients such as nitrate (NO3 (-)), nitrite (NO2 (-)), ammonia (NH3) and phosphate (PO4 (3-)) were determined to be critical indicators of water quality throughout the year. Influential water quality parameters during the wet season were conductivity, salinity, biochemical oxygen demand (BOD), dissolved oxygen (DO) and chlorophyll a (Chla), whereas total suspended solid (TSS) and pH were critical water quality indicators during the dry season. The Kruskal-Wallis H test showed that water quality parameters were significantly different among the sampling months and stations (p<0.05), and Mann-Whitney U tests further revealed that the significantly different parameters were temperature, pH, DO, TSS, NO2 (-) and BOD (p<0.01), whereas salinity, conductivity, NO3 (-), PO4 (3-), NH3 and Chla were not significantly different (p>0.05). Water quality parameters in the estuary varied on both temporal and spatial scales and these results may serve as baseline information for estuary management, specifically for the Merbok estuary.
  2. Maznah WO, Al-Fawwaz AT, Surif M
    J Environ Sci (China), 2012;24(8):1386-93.
    PMID: 23513679
    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.
  3. Abdullahi ZH, Marselin FN, Khaironizam NIA, Fauzi NFA, Wan Maznah WO
    Plant Physiol Biochem, 2023 Apr;197:107633.
    PMID: 36965319 DOI: 10.1016/j.plaphy.2023.03.010
    As part of the lampenflora that inhabit limestone caves, microalgae play an important role in cave ecosystems but are understudied in tropical ecoregions. In the present study, the dominant eukaryotic and prokaryotic microalgae identified in lampenflora samples collected from Gua Tempurung, a cave in Malaysia, and growth stage-related microalgal attributes were determined. Stichococcus bacillaris, Synechococcus sp., and Trentepohlia aurea were selected and cultured in Bold's Basal Medium (S. bacillaris and T. aurea) or BG-11 medium (Synechococcus sp.) under laboratory conditions. The highest specific growth rate (0.72 ± 0.21 day-1) and dry weight (0.11 ± 0.04 mg L-1) were recorded in S. bacillaris in the early stationary phase. Trentepohlia aurea and Synechococcus sp. had the highest ash-free dry weight and total ash percentage (11.18 ± 4.64 mg L-1 and 8.55% ± 6.73%, respectively) in the early stationary phase. Stichococcus bacillaris had the highest moisture content (84.26% ± 0.64%) in the exponential phase. Chlorophylls a and b were highest in the early stationary phase in T. aurea (0.706 ± 0.40 mg L-1 and 1.094 ± 0.589 mg L-1, respectively). Carotenoid levels were highest in Synechococcus sp. in the early stationary stage (0.07 ± 0.02 mg L-1). Lipids were the major biochemical compound identified at the highest levels in Synechococcus sp. (67.87% ± 7.75%) in the early stationary phase, followed by protein recorded at the highest levels in T. aurea (57.99% ± 4.99%) in the early stationary phase. Carbohydrates were the compound identified least often with the highest recorded levels found in T. aurea (9.94% ± 0.49%) in the late stationary phase. Biomass, pigments, and biochemical accumulation varied at different growth stages in the studied microalgae, and this variation was species-specific. The present study provides a benchmark for the growth phases of aerophytic cave microalgae, which will be useful for determining their optimum harvest time and obtaining biochemical compounds of interest.
  4. Johan I, Maznah WO, Mashhor M, Abu Hena MK, Amin SM
    Pak J Biol Sci, 2012 Jul 01;15(13):647-52.
    PMID: 24218935
    Investigation on copepod communities in Perai river estuary was conducted from November 2005 to May 2006. Five stations were established for monthly sampling and were located from the river mouth to the upper reaches of the river. Copepod samples were collected from vertical tows using a standard zooplankton net. The Perai river estuary was slightly stratified and salinity decreases significantly from the mouth of the river towards the upper reaches of the river. A total of 28 species of copepods were recorded and comprised of 14 families, Paracalanidae, Oithonidae, Corycaeidae, Acartiidae, Calanidae, Centropagidae, Eucalanidae, Pontellidae, Pseudodiaptomidae, Tortanidae, Ectinosomatidae, Euterpinidae, Clausidiidae and Cyclopidae. A total of 10 species showed high positive affiliation towards salinity (R > 0.60), Acartia spinicauda, Euterpina acutifrons, Microsetella norvegica, Oithona nana, Oithona simplex, Paracalanus crassirostris, Paracalanus elegans, Paracalanus parvus, Pseudodiaptomus sp. and Hemicyclops sp. The copepod species Pseudodiaptomus dauglishi were negatively affiliated towards salinity (R = -0.71). The copepod assemblages classified into two distinct groups according to salinity regimes, euryhaline-polyhaline group (25 marine affiliated species) and oligohaline-mesohaline group (3 freshwater affiliated species).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links