METHODS: External root resorption was simulated on 88 extracted premolar teeth using tungsten bur in different depths (0.5 mm, 1 mm, and 2 mm). All teeth were scanned using a Cone beam CT (Carestream Dental, Atlanta, GA). Afterward, a training (70%), validation (10%), and test (20%) dataset were established. The performance of four DLMs including Random Forest (RF) + Visual Geometry Group 16 (VGG), RF + EfficienNetB4 (EFNET), Support Vector Machine (SVM) + VGG, and SVM + EFNET) and four hybrid models (DLM + FST: (i) FS + RF + VGG, (ii) FS + RF + EFNET, (iii) FS + SVM + VGG and (iv) FS + SVM + EFNET) was compared. Five performance parameters were assessed: classification accuracy, F1-score, precision, specificity, and error rate. FST algorithms (Boruta and Recursive Feature Selection) were combined with the DLMs to assess their performance.
RESULTS: RF + VGG exhibited the highest performance in identifying ERR, followed by the other tested models. Similarly, FST combined with RF + VGG outperformed other models with classification accuracy, F1-score, precision, and specificity of 81.9%, weighted accuracy of 83%, and area under the curve (AUC) of 96%. Kruskal Wallis test revealed a significant difference (p = 0.008) in the prediction accuracy among the eight DLMs.
CONCLUSION: In general, all DLMs have similar performance on ERR identification. However, the performance can be improved by combining FST with DLMs.