METHODS: A literature search of studies related to the use of precision medicine in diabetes care was conducted in various databases (PubMed, Google Scholar, and Scopus).
RESULTS: Precision medicine encompasses the integration of a wide array of personal data, including clinical, lifestyle, genetic, and various biomarker information. Its goal is to facilitate tailored treatment approaches using contemporary diagnostic and therapeutic techniques that specifically target patients based on their genetic makeup, molecular markers, phenotypic traits, or psychosocial characteristics. This article not only highlights significant advancements but also addresses key challenges, particularly focusing on the technologies that contribute to the realization of personalized and precise diabetes care.
CONCLUSION: For the successful implementation of precision diabetes medicine, collaboration and coordination among multiple stakeholders are crucial.
AREAS COVERED: Mitochondrial deficits impact insulin-resistant skeletal muscles, adipose tissue, liver, and pancreatic β-cells, affecting glucose and lipid balance. Exercise emerges as a key factor in enhancing mitochondrial function, thereby reducing insulin resistance. Additionally, the therapeutic potential of mitochondrial uncoupling, which generates heat instead of ATP, is discussed. We explore the intricate link between mitochondrial function and diabetes, investigating genetic interventions to mitigate diabetes-related complications. We also cover the impact of insulin deficiency on mitochondrial function, the role of exercise in addressing mitochondrial defects in insulin resistance, and the potential of mitochondrial uncoupling. Furthermore, a comprehensive analysis of Mitochondrial Replacement Therapies (MRT) techniques is presented.
EXPERT OPINION: MRTs hold promise in preventing the transmission of mitochondrial disease. However, addressing ethical, regulatory, and technical considerations is crucial. Integrating mitochondrial-based treatments requires a careful balance between innovation and safety. Ethical dimensions and regulatory aspects of MRT are examined, emphasizing collaborative efforts for the responsible advancement of human health.
METHOD: To overcome the limitation, the use of artificial intelligence along with technical tools has been extensively investigated for AD diagnosis. For developing a promising artificial intelligence strategy that can diagnose AD early, it is critical to supervise neuropsychological outcomes and imaging-based readouts with a proper clinical review.
CONCLUSION: Profound knowledge, a large data pool, and detailed investigations are required for the successful implementation of this tool. This review will enlighten various aspects of early diagnosis of AD using artificial intelligence.