Displaying all 5 publications

Abstract:
Sort:
  1. Mawazi SM, Doolaanea AA, Hadi HA, Chatterjee B
    Int J Pharm, 2021 Jun 01;602:120638.
    PMID: 33901596 DOI: 10.1016/j.ijpharm.2021.120638
    Crystallinity plays a vital role in the pharmaceutical industry. It affects drug manufacturing, development processes, and the stability of pharmaceutical dosage forms. An objective of this study was to measure and analyze the carbamazepine (CBZ) crystallinity before and after formulation. Moreover, it intended to determine the extent to which the crystallinity of CBZ would affect the drug loading, the particle size, and the release of CBZ from the microparticles. The CBZ microparticles were prepared by encapsulating CBZ in ethyl cellulose (EC) polymer using a solvent evaporation method. EC was used here as a release modifier polymer and polyvinyl alcohol (PVA) as an aqueous phase stabilizer. Factorial design was used to prepare the CBZ microparticle formulations, including polymer concentration, solvent (dichloromethane, ethyl acetate), PVA concentrations factor, the homogenization time, and homogenization speed. The crystallinity of CBZ was calculated utilizing differential scanning calorimetry (DSC) thermal analysis. The crystallinity was calculated from the enthalpy of CBZ. Enthalpy was analyzed from the area under the curve peak of CBZ standard and CBZ-loaded microparticles. DSC and ATR-FTIR assessed the possible interaction between CBZ and excipients in the microparticle. The prepared CBZ microparticles showed various changes in the crystallinity rate of CBZ. The changes in the rate of CBZ crystallinity had different effects on the particle size, the drug loading, and the release of CBZ from the polymer. Statistically, all studied factors significantly affected the crystallinity of CBZ after formulation to microparticles.
  2. Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S
    Polymers (Basel), 2024 May 10;16(10).
    PMID: 38794545 DOI: 10.3390/polym16101351
    Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
  3. Mawazi SM, Fathima N, Mahmood S, Al-Mahmood SMA
    Am J Emerg Med, 2024 Sep 04;85:98-107.
    PMID: 39244809 DOI: 10.1016/j.ajem.2024.09.001
    The COVID-19 epidemic has become a major international health emergency. Millions of people have died as a result of this phenomenon since it began. Has there been any successful pharmacological treatment for COVID-19 since the initial report on the virus? How many searches are undertaken to address the impact of the infection? What is the number of drugs that have undergone investigation? What are the mechanisms of action and adverse effects associated with the investigated pharmaceuticals used to treat COVID-19? Has the Food and Drug Administration (FDA) approved any medication to treat COVID-19? To date, our understanding is based on a restricted corpus of published investigations into the treatment of COVID-19. It is important to note that no single study comprehensively encompasses all pharmacological interventions for COVID-19. This paper provides an introductory summary of a bibliometric analysis conducted on the data about COVID-19, sourced explicitly from two platforms, namely PubMed and ScienceDirect. The analysis encompasses the period spanning from 2019 to 2022. Furthermore, this study examines the published literature about the pharmacological interventions for the novel coronavirus disease 2019 (COVID-19), explicitly focusing on the safety and effectiveness of different medications such as Remdesivir (marketed as Veklury®), Lopinavir/Ritonavir (commercially known as Kaletra® or Aluvia®), Ribavirin, Favipiravir (marketed as Avigan®), Ivermectin, Casirivimab and Imdevimab (branded as Ronapreve®), Sotrovimab (marketed as Xevudy®), Anakinra, Molnupiravir, Nirmatrelvir/Ritonavir (marketed as Paxlovid®), and Galidesivir. Findings indicate that while Remdesivir and Nirmatrelvir/Ritonavir show significant efficacy in reducing hospitalization and severe outcomes, drugs like Lopinavir/Ritonavir and Ivermectin have inconsistent results. Our insights suggest a multifaceted approach incorporating these therapies can significantly improve patient outcomes. Repurposing drugs has been critical in rapidly responding to COVID-19, allowing existing medications to be used in new ways to combat the virus. Combination therapies and further research are essential to optimize treatment strategies.
  4. Alkhatib H, Mawazi SM, Al-Mahmood SMA, Zaiter A, Doolaanea AA
    J Pharm Bioallied Sci, 2020 07 18;12(3):284-288.
    PMID: 33100788 DOI: 10.4103/jpbs.JPBS_208_20
    Thymoquinone (TQ) is the major active compound in black seed oil (BSO). Many pharmacological effects of TQ, such as anti-inflammatory, hypoglycemic, antioxidant, immune stimulator, and anticancer, have been reported. TQ can be considered as a biomarker for BSO, but its content in the commercial products is rarely reported. TQ content varies based on the oil source and extraction method. This study aimed to quantify the TQ content in the commercial BSO products in Malaysia and to evaluate whether the products can be used as a source of TQ for therapeutic benefits. TQ was quantified using an established high-performance liquid chromatography (HPLC) method. TQ human equivalent dose (HED) was calculated based on reported animal studies from literature, and theoretical BSO amount containing the TQ dose was calculated based on the HPLC analysis. TQ content in the commercial BSO products ranged from 0.07% wt/wt to 1.88% wt/wt. The product with the highest TQ concentration is approximately 27-fold higher than the product with the lowest TQ concentration. Consequently, theoretical BSO amounts needed for specific diseases varied and some products cannot provide practical amount of TQ. This study recommends the regulation of TQ content in BSO and suggests that the BSO might be fortified with extra TQ to be effectively used in some diseases.
  5. Mawazi SM, Al-Mahmood SMA, Chatterjee B, Hadi HA, Doolaanea AA
    Pharmaceutics, 2019 Sep 20;11(10).
    PMID: 31547112 DOI: 10.3390/pharmaceutics11100488
    This study aimed to develop a carbamazepine (CBZ) sustained release formulation suitable for pediatric use with a lower risk of precipitation. The CBZ was first prepared as sustained release microparticles, and then the microparticles were embedded in alginate beads, and finally, the beads were suspended in a gel vehicle. The microparticles were prepared by a solvent evaporation method utilizing ethyl cellulose as a sustained release polymer and were evaluated for particle size, encapsulation efficiency, and release profile. The beads were fabricated by the dropwise addition of sodium alginate in calcium chloride solution and characterized for size, shape, and release properties. The gel was prepared using iota carrageenan as the gelling agent and evaluated for appearance, syneresis, drug content uniformity, rheology, release profile, and stability. The microparticles exhibited a particle size of 135.01 ± 0.61 µm with a monodisperse distribution and an encapsulation efficiency of 83.89 ± 3.98%. The beads were monodispersed with an average size of 1.4 ± 0.05 mm and a sphericity factor of less than 0.05. The gel was prepared using a 1:1 ratio (gel vehicle to beads) and exhibited no syneresis, good homogeneity, and good shear-thinning properties. The release profile from the beads and from the gel was not significantly affected, maintaining similarity to the tablet form. The gel properties were maintained for one month real time stability, but the accelerated stability showed reduced viscosity and pH with time. In conclusion, CBZ in a gel sustained release dosage form combines the advantages of the suspension form in terms of dosing flexibility, and the advantages of the tablet form in regards to the sustained release profile. This dosage form should be further investigated in vivo in animal models before being considered in clinical trials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links