Displaying all 13 publications

Abstract:
Sort:
  1. Kamarudin, K.S.N., Chieng, Y.Y., Hamdan, H., Mat, H.
    ASM Science Journal, 2008;2(1):35-44.
    MyJurnal
    The importance of zeolite surface area and pore volume in adsorption processes has been much reported in literature. In addition to that, structural framework and pore network system may also influence the adsorption capacity and selectivity of methane on zeolite. This paper discusses the characteristics of methane adsorption based on several physical properties of the adsorbents such as surface area, pore volume, pore network system and its interaction with adsorbate. The study, using FTIR spectroscopy showed that the adsorbed methane at room temperature was detected in the FTIR region between 3200 cm–1 – 1200 cm–1. Based on the physical properties of the adsorbents and the FTIR spectra of adsorbed methane, the surface area was not the only factor that determined methane adsorption; in fact the type of pore network system of the adsorbent also affected the interaction, thus affecting the adsorption of methane in zeolite.
  2. Kamarudin, K.S.N., Chieng, Y.Y., Hamdan, H., Mat, H.
    ASM Science Journal, 2010;4(1):29-40.
    MyJurnal
    Ordered microporous NaY zeolite and mesoporous copper oxide are high performance material as catalysts and adsorbents. The copper oxide-NaY zeolite modification in combination of their physicochemical properties could provide excellent opportunities for the creation of new gas adsorbents. In this study, modified NaY zeolite properties and methane adsorptive characteristics were investigated by dispersing copper oxide onto the NaY zeolite structure using the thermal dispersion method. The structures of the copper oxide modified zeolites were characterized by powder X-ray diffraction and Micromeritics ASAP 2000, while the methane adsorption characteristics were analyzed using a thermogravimetric analyzer. The results revealed that types of copper oxide, copper oxide loading concentration, calcination temperature and calcination time greatly affected the modified zeolite structure and gas methane adsorption characteristics.
  3. Nini Shuhaida MH, Siti Suhaila MY, Azidah KA, Norhayati NM, Nani D, Juliawati M
    J Taibah Univ Med Sci, 2019 Jun;14(3):268-276.
    PMID: 31435416 DOI: 10.1016/j.jtumed.2019.03.002
    OBJECTIVE: This study aims to identify risks induced by depression, anxiety, stress, and socio-demographic factors associated with poor glycaemic control among type II diabetes mellitus patients in Kuala Terengganu, Malaysia.

    METHODS: This cross-sectional study was performed in two Malaysian health clinics by using the Malay version of a self-administered questionnaire. This instrument contains a diabetes care profile, a 21-item version of the Depression Anxiety Stress Scales (DASS21), and a Malaysian Medication Adherence Score (MalMAS). Simple and multiple logistic regression analyses were performed.

    RESULTS: A total of 338 type II diabetes mellitus patients responded (response rate 93.1%). The proportion of patients with poor glycaemic control was 76.0%. Multiple logistic regression analysis showed that 1) social support scores [Adj. OR (95% CI): 1.06 (1.03,1.10); p = 0.001]; 2) unemployment [Adj. OR (95% CI): 0.46 (0.22,0.95); p = 0.035]; 3) pensioner status [Adj. OR (95% CI): 0.28 (0.13,0.61); p = 0.001]; and 4) perception of diabetes as interfering with daily living activities [Adj. OR (95% CI): 3.18 (1.17,8.70); p = 0.024] were significant factors for poor glycaemic control.

    CONCLUSIONS: Unemployment, perception of diabetes' interference with daily living activities, and social support are significantly correlated with poor glycaemic control. Further studies assessing other important clinical and psychosocial factors that may influence glycaemic control are suggested. A younger age range of participants is recommended for better outcomes and interventional implementation of findings.

  4. Johari K, Alias AS, Saman N, Song ST, Mat H
    Waste Manag Res, 2015 Jan;33(1):81-8.
    PMID: 25492720 DOI: 10.1177/0734242X14562660
    The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.
  5. Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H
    Chemosphere, 2016 Aug;156:56-68.
    PMID: 27160635 DOI: 10.1016/j.chemosphere.2016.04.114
    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.
  6. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Mat H
    Carbohydr Polym, 2017 Jun 15;166:291-299.
    PMID: 28385235 DOI: 10.1016/j.carbpol.2017.02.102
    This work reports on a complete isolation and characterization of lignocellulosic compounds from oil palm empty fruit bunch (OPEFB) by ionic liquid (IL) treatment and alkaline treatment processes. The fractionated lignocellulosic compounds were confirmed by FTIR and CP/MAS 13CNMR analyses. The yield of the cellulose, hemicellulose and lignin fractions was 52.72±1.50% wt., 27.17±1.68% wt. and 16.82±1.15% wt. with molecular weight of 1869g/mol, 1736g/mol and 2695g/mol, and degradation temperature of 325.65°C, 236.25°C, and 201.40°C, respectively. The SEM image illustrates the bundle-like fiber of cellulose fraction and smaller particle size of hemicellulose and lignin fractions with inconsistent shape. The XRD patterns depict the crystalline cellulose, amorphous lignin and partially amorphous hemicellulose fractions property. The IL could be recovered and reused with an overall recovery of 48% wt. after the fourth cycle.
  7. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H
    Chemosphere, 2017 Mar;171:19-30.
    PMID: 28002763 DOI: 10.1016/j.chemosphere.2016.12.049
    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.
  8. Kunjirama M, Saman N, Johari K, Song ST, Kong H, Cheu SC, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(17):15167-15181.
    PMID: 28500549 DOI: 10.1007/s11356-017-9117-z
    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Qm.exp) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Qm.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.
  9. Mohtar SS, Sharuddin SSN, Saman N, Lye JWP, Othman NS, Mat H
    Environ Sci Pollut Res Int, 2020 Jun;27(16):20173-20186.
    PMID: 32236809 DOI: 10.1007/s11356-019-06507-x
    The utilization of natural zeolite (NZ) as an adsorbent for NH4+ removal was investigated. Three types of NZ (i.e., NZ01, NZ02, and NZ03) were characterized, and their NH4+ adsorption process in aqueous solution was evaluated. The effect of pH towards NH4+ adsorption showed that the NZ01 has the highest NH4+ adsorption capacity compared with other natural zeolites used. The application of NZ01 for a simultaneous removal of NH4+ and turbidity in synthetic NH4+-kaolin suspension by adsorptive coagulation process for treating drinking water was studied. The addition of NZ01 into the system increased the NH4+ removal efficiency (ηNH4+) from 11.64% without NZ01 to 41.86% with the addition of 0.2 g L-1 of NZ01. The turbidity removal (ηT), however, was insignificantly affected since the ηT was already higher than 98.0% over all studied parameter's ranges. The thermodynamic and kinetic data analyses suggested that the removal of NH4+ obeyed the Temkin isotherm model and pseudo-second-order kinetic model, respectively. Generally, the turbidity removal was due to the flocculation of destabilized solid particles by alum in the suspension system. The ηNH4+ in surface water was 29.31%, which is lower compared with the removal in the synthetic NH4+-kaolin suspension, but a high ηT (98.65%) was observed. It was found that the addition of the NZ01 could enhance the removal of NH4+ as well as other pollutants in the surface water.
  10. Kong H, Saman N, Tee PN, Cheu SC, Song ST, Johari K, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11140-11152.
    PMID: 30796666 DOI: 10.1007/s11356-019-04248-5
    The aim of this work is to convert agroforestry residue to a novel adsorbent (M-1CTA-SDS-BT) used for adsorptive benzene sequestration from aqueous solution. In this study, the anionic surfactant-coated-cationized banana trunk was synthesized and characterized for batch adsorption of benzene from aqueous solution. The surface morphology, surface chemistry, surface area, and pore properties of the synthesized adsorbents were examined. It was proven that surface cationization successfully increased the benzene adsorption capacity of sodium dodecyl sulfate-coated adsorbents. The Langmuir isotherm model satisfactorily described the equilibrium adsorption data. The maximum benzene adsorption capacity (qmax) of 468.19 μmol/g was attained. The kinetic data followed the pseudo-second-order kinetic model in which the rate-limiting step was proven to be the film diffusion. The batch-adsorbent regeneration results indicated that the M-1CTA-SDS-BT could withstand at least five adsorption/desorption cycles without drastic adsorption capacity reduction. The findings demonstrated the adsorptive potential of agroforestry-based adsorbent as a natural and cheap material for benzene removal from contaminated water.
  11. Omar ED, Mat H, Abd Karim AZ, Sanaudi R, Ibrahim FH, Omar MA, et al.
    Int J Nephrol Renovasc Dis, 2024;17:197-204.
    PMID: 39070075 DOI: 10.2147/IJNRD.S461028
    PURPOSE: This study aimed to identify the best-performing algorithm for predicting Acute Kidney Injury (AKI) necessitating dialysis following cardiac surgery.

    PATIENTS AND METHODS: The dataset encompassed patient data from a tertiary cardiothoracic center in Malaysia between 2011 and 2015, sourced from electronic health records. Extensive preprocessing and feature selection ensured data quality and relevance. Four machine learning algorithms were applied: Logistic Regression, Gradient Boosted Trees, Support Vector Machine, and Random Forest. The dataset was split into training and validation sets and the hyperparameters were tuned. Accuracy, Area Under the ROC Curve (AUC), precision, F-measure, sensitivity, and specificity were some of the evaluation criteria. Ethical guidelines for data use and patient privacy were rigorously followed throughout the study.

    RESULTS: With the highest accuracy (88.66%), AUC (94.61%), and sensitivity (91.30%), Gradient Boosted Trees emerged as the top performance. Random Forest displayed strong AUC (94.78%) and accuracy (87.39%). In contrast, the Support Vector Machine showed higher sensitivity (98.57%) with lower specificity (59.55%), but lower accuracy (79.02%) and precision (70.81%). Sensitivity (87.70%) and specificity (87.05%) were maintained in balance via Logistic Regression.

    CONCLUSION: These findings imply that Gradient Boosted Trees and Random Forest might be an effective method for identifying patients who would develop AKI following heart surgery. However specific goals, sensitivity/specificity trade-offs, and consideration of the practical ramifications should all be considered when choosing an algorithm.

  12. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, et al.
    Bioresour Technol, 2015 Sep;192:212-8.
    PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029
    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
  13. Ong PS, Tan LK, Mat H, Tohar N, Fathi AM, Kosenin NMA, et al.
    Mediterr J Rheumatol, 2024 Jun;35(2):234-240.
    PMID: 39211017 DOI: 10.31138/mjr.050723.fla
    OBJECTIVE: The aim of this study was to establish the incidence of liver abnormalities in psoriatic arthritis patients and identify the factors that contributed to this condition.

    METHODS: This is a longitudinal cohort study. Psoriatic arthritis (PsA) patients with liver enzymes abnormalities were identified. Our control group consisted of PsA patient from the same cohort who had no history of liver abnormalities. Factors associated with liver abnormalities were identified using univariate and multivariate analysis.

    RESULTS: A total of 247 of PsA patients were included and out of those, 99 developed liver enzymes abnormalities. The mean age of the patients was 56 years old (±13.5) with 56.1% female and 39.4% Indian descendants. The univariate logistic regression demonstrated that disease duration of PsA (OR=1.06, 95% CI=1.01 - 1.10, p=0.012), diabetes mellitus (OR=2.16, 95% CI=1.26 - 3.70, 0.005) and non-alcoholic fatty liver disease (NAFLD) (OR=3.90, 95% CI = 1.44 - 10.53, p=0.007) were associated with abnormal liver function in PsA patients. No association was found with both conventional synthetic disease-modifying antirheumatic drugs or biologics.

    CONCLUSION: Liver enzymes abnormalities in PsA patients were linked to disease duration, diabetes mellitus and NAFLD. For these high-risk populations, vigilant monitoring of liver function tests is vital for early detection and intervention.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links