Displaying all 3 publications

Abstract:
Sort:
  1. Ahmad-Hanafi S, Zulkifli I, Ramiah SK, Chung ELT, Kamil R, Sazili AQ, et al.
    Poult Sci, 2024 Oct;103(10):103948.
    PMID: 39127008 DOI: 10.1016/j.psj.2024.103948
    Feed restriction could induce physiological stress in broiler chickens, leading to welfare issues. Prenatal stimulation could improve stress-coping mechanisms in poultry. The present study aimed to elucidate the effects of subjecting developing embryos to auditory stimulation on physiological stress response to feed restriction in broiler chickens at market age. A total of 423 hatching eggs of Cobb 500 (Gallus domesticus) were subjected to the following auditory treatments: 1) no additional sound treatment other than the background sound of the incubator's compressors at 40 dB (CONTROL), 2) exposure to pre-recorded traffic noise at 90 dB (NOISE), and 3) exposure to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. On d 42, an equal number of birds from each prenatal auditory stimulation (PAS) group were subjected to either ad libitum feeding (AL) or 30-h of feed restriction (FR) in a completely randomised design. The FR chickens exhibited significantly higher serum levels of corticosterone (CORT), and heat shock protein (HSP) 70 compared to those of AL. Prenatal auditory stimulation, particularly NOISE, led to lower serum levels of CORT and alpha-1-acid glycoprotein (AGP) levels compared to the CONTROL group. Additionally, NOISE significantly increased brain mRNA glucocorticoid receptor and HSP70 gene expression. The cecal population of E. coli and Lactobacillus spp. was not significantly affected by prenatal auditory stimulation. In conclusion, our findings suggest that prenatal auditory stimulation, particularly NOISE, positively impacts broiler chickens' ability to cope with feed restriction.
  2. Sloan JM, Mujab AAM, Mashitah J, Zulkarami B, Wilson MJ, Toh LS, et al.
    Rice (N Y), 2023 Mar 22;16(1):16.
    PMID: 36947269 DOI: 10.1186/s12284-023-00629-0
    Tillering and yield are linked in rice, with significant efforts being invested to understand the genetic basis of this phenomenon. However, in addition to genetic factors, tillering is also influenced by the environment. Exploiting experiments in which seedlings were first grown in elevated CO2 (eCO2) before transfer and further growth under ambient CO2 (aCO2) levels, we found that even moderate exposure times to eCO2 were sufficient to induce tillering in seedlings, which was maintained in plants grown to maturity plants in controlled environment chambers. We then explored whether brief exposure to eCO2 (eCO2 priming) could be implemented to regulate tiller number and yield in the field. We designed a cost-effective growth system, using yeast to increase the CO2 level for the first 24 days of growth, and grew these seedlings to maturity in semi-field conditions in Malaysia. The increased growth caused by eCO2 priming translated into larger mature plants with increased tillering, panicle number, and improved grain filling and 1000 grain weight. In order to make the process more appealing to conventional rice farmers, we then developed a system in which fungal mycelium was used to generate the eCO2 via respiration of sugars derived by growing the fungus on lignocellulosic waste. Not only does this provide a sustainable source of CO2, it also has the added financial benefit to farmers of generating economically valuable oyster mushrooms as an end-product of mycelium growth. Our experiments show that the system is capable of generating sufficient CO2 to induce increased tillering in rice seedlings, leading eventually to 18% more tillers and panicles in mature paddy-grown crop. We discuss the potential of eCO2 priming as a rapidly implementable, broadly applicable and sustainable system to increase tillering, and thus yield potential in rice.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links