Displaying all 6 publications

Abstract:
Sort:
  1. Bin Ahmad Nadzri AA, Ahmad SA, Marhaban MH, Jaafar H
    Australas Phys Eng Sci Med, 2014 Mar;37(1):133-7.
    PMID: 24443218 DOI: 10.1007/s13246-014-0243-3
    Surface electromyography (SEMG) signals can provide important information for prosthetic hand control application. In this study, time domain (TD) features were used in extracting information from the SEMG signal in determining hand motions and stages of contraction (start, middle and end). Data were collected from ten healthy subjects. Two muscles, which are flexor carpi ulnaris (FCU) and extensor carpi radialis (ECR) were assessed during three hand motions of wrist flexion (WF), wrist extension (WE) and co-contraction (CC). The SEMG signals were first segmented into 132.5 ms windows, full wave rectified and filtered with a 6 Hz low pass Butterworth filter. Five TD features of mean absolute value, variance, root mean square, integrated absolute value and waveform length were used for feature extraction and subsequently patterns were determined. It is concluded that the TD features that were used are able to differentiate hand motions. However, for the stages of contraction determination, although there were patterns observed, it is determined that the stages could not be properly be differentiated due to the variability of signal strengths between subjects.
  2. Misron N, Shin NW, Shafie S, Marhaban MH, Mailah NF
    Sensors (Basel), 2011;11(11):10474-89.
    PMID: 22346653 DOI: 10.3390/s111110474
    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.
  3. Abdul Wahit MA, Ahmad SA, Marhaban MH, Wada C, Izhar LI
    Sensors (Basel), 2020 Jul 27;20(15).
    PMID: 32727150 DOI: 10.3390/s20154174
    Trans-radial prosthesis is a wearable device that intends to help amputees under the elbow to replace the function of the missing anatomical segment that resembles an actual human hand. However, there are some challenging aspects faced mainly on the robot hand structural design itself. Improvements are needed as this is closely related to structure efficiency. This paper proposes a robot hand structure with improved features (four-bar linkage mechanism) to overcome the deficiency of using the cable-driven actuated mechanism that leads to less structure durability and inaccurate motion range. Our proposed robot hand structure also took into account the existing design problems such as bulky structure, unindividual actuated finger, incomplete fingers and a lack of finger joints compared to the actual finger in its design. This paper presents the improvements achieved by applying the proposed design such as the use of a four-bar linkage mechanism instead of using the cable-driven mechanism, the size of an average human hand, five-fingers with completed joints where each finger is moved by motor individually, joint protection using a mechanical stopper, detachable finger structure from the palm frame, a structure that has sufficient durability for everyday use and an easy to fabricate structure using 3D printing technology. The four-bar linkage mechanism is the use of the solid linkage that connects the actuator with the structure to allow the structure to move. The durability was investigated using static analysis simulation. The structural details and simulation results were validated through motion capture analysis and load test. The motion analyses towards the 3D printed robot structure show 70-98% similar motion range capability to the designed structure in the CAD software, and it can withstand up to 1.6 kg load in the simulation and the real test. The improved robot hand structure with optimum durability for prosthetic uses was successfully developed.
  4. Shair EF, Ahmad SA, Marhaban MH, Mohd Tamrin SB, Abdullah AR
    Biomed Res Int, 2017;2017:3937254.
    PMID: 28303251 DOI: 10.1155/2017/3937254
    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
  5. Mohafez H, Ahmad SA, Hadizadeh M, Moghimi S, Roohi SA, Marhaban MH, et al.
    Skin Res Technol, 2018 Feb;24(1):45-53.
    PMID: 28557064 DOI: 10.1111/srt.12388
    PURPOSE: We aimed to develop a method for quantitative assessment of wound healing in ulcerated diabetic feet.

    METHODS: High-frequency ultrasound (HFU) images of 30 wounds were acquired in a controlled environment on post-debridement days 7, 14, 21, and 28. Meaningful features portraying changes in structure and intensity of echoes during healing were extracted from the images, their relevance and discriminatory power being verified by analysis of variance. Relative analysis of tissue healing was conducted by developing a features-based healing function, optimised using the pattern-search method. Its performance was investigated through leave-one-out cross-validation technique and reconfirmed using principal component analysis.

    RESULTS: The constructed healing function could depict tissue changes during healing with 87.8% accuracy. The first principal component derived from the extracted features demonstrated similar pattern to the constructed healing function, accounting for 86.3% of the data variance.

    CONCLUSION: The developed wound analysis technique could be a viable tool in quantitative assessment of diabetic foot ulcers during healing.

  6. Zhang X, Dong X, Saripan MIB, Du D, Wu Y, Wang Z, et al.
    Thorac Cancer, 2023 Jul;14(19):1802-1811.
    PMID: 37183577 DOI: 10.1111/1759-7714.14924
    BACKGROUND: Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information.

    METHODS: Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics.

    RESULTS: The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models.

    CONCLUSION: The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links