METHODS: High-frequency ultrasound (HFU) images of 30 wounds were acquired in a controlled environment on post-debridement days 7, 14, 21, and 28. Meaningful features portraying changes in structure and intensity of echoes during healing were extracted from the images, their relevance and discriminatory power being verified by analysis of variance. Relative analysis of tissue healing was conducted by developing a features-based healing function, optimised using the pattern-search method. Its performance was investigated through leave-one-out cross-validation technique and reconfirmed using principal component analysis.
RESULTS: The constructed healing function could depict tissue changes during healing with 87.8% accuracy. The first principal component derived from the extracted features demonstrated similar pattern to the constructed healing function, accounting for 86.3% of the data variance.
CONCLUSION: The developed wound analysis technique could be a viable tool in quantitative assessment of diabetic foot ulcers during healing.
METHODS: Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics.
RESULTS: The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models.
CONCLUSION: The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.