This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation.
Aquaculture activity has increased the population of crab, hence increasing the generation of related wastes, particularly the shell. In addition, the number of molting process in crabs compounds further the amount of waste shell generated. As such, in the present work, the application of the waste crab shell as a source of CaO in transesterification of palm olein to biodiesel (methyl ester) was investigated. Preliminary XRD results revealed that thermally activated crab shell contains mainly CaO. Parametric study has been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 4 wt. %; and reaction temperature, 338 K. As compared to laboratory CaO, the catalyst from waste crab shell performs well, thus creating another low-cost catalyst source for producing biodiesel as well as adding value to the waste crab shell. Reusability of crab shell CaO has also been studied and the outcome confirmed that the catalyst is capable to be reutilized up to 11 times, without any major deterioration.
A recent rise in crab aquaculture activities has intensified the generation of waste shells. In the present study, the waste shells were utilized as a source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shell is calcium carbonate which transformed into calcium oxide when activated above 700 degrees C for 2 h. Parametric studies have been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 5 wt.%; reaction temperature, 65 degrees C; and a stirring rate of 500 rpm. The waste catalyst performs equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to 11 times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity.
Peroxisome proliferator-activated receptor gamma (PPARγ), a type II nuclear receptor present in adipose tissue, colon and macrophages. It reduces the hyperglycemia associated metabolic syndromes. Particularly, type II diabetes-related cardiovascular system risk in human beings. The fatty acid storage and glucose metabolism are regulated by PPARγ activation in human body. According to recent reports commercially available PPARγ activating drugs have been causing severe side effects. At the same time, natural products have been proved to be a promising area of drug discovery. Recently, many studies have been attempted to screen and identify a potential drug candidate to activate PPARγ. Hence, in this study we have selected some of the bio-active molecules from traditional medicinal plants. Molecular docking studies have been carried out against the target, PPARγ. We Results suggested that Punigluconin has a efficient docking score and it is found to have good binding affinities than other ligands. Hence, we concluded that Punigluconin is a better drug candidate for activation of PPARγ gene expression. Further studies are necessary to confirm their efficacy and possibly it can develop as a potential drug in future.
The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases.
In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
In this research investigation, three microalgal species were screened (Pleurosigma sp., Amphora sp., and Amphiprora sp.) for lipid content before choosing the potential microalgae for biodiesel production. It was found that the lipid content of Amphiprora sp. was 41.48 ± 0.18%, which was higher than the Pleurosigma sp. (27.3 ± 0.8%) and Amphora sp. (22.49 ± 0.21%). The diatom microalga, Amphiprora sp. was isolated and exposed to a controlled environment. Two different media were prepared, and the main research was on the SiO2-NP medium as the cell wall of diatom was made up of silica. Essential growth parameters were studied such as dry cell weight and chlorophyll a content. The results revealed that Amphiprora sp. cultured in the modified medium showed a higher biomass yield and growth rate in all the analyses. In Soxhlet extraction method, biodiesel yield of Amphiprora sp. in modified medium under 24 μmol m-2 s-1 of light intensity was 81.47 ± 1.59% when using 2% of catalyst amount with 1.5:1 volume ratio of methanol/oil in 3 h reaction time at 65 °C. Results reveled that Amphiprora sp. diatom has a higher yield of oil 52.94 ± 0.42% and can be efficiently optimized with further studies with modified nanomaterial culture medium. The present research revealed the series of experiments on microalgal lipid transesterification and in future investigation different types of nanomaterials should be used in culture medium to identify the lipid production in microalgal cells.
Biomass and lipid production by the marine diatom Chaetoceros affinis were characterized under continuous light with aeration. Media based on palm oil mill effluent (POME; 10, 20 and 30 % v/v in distilled water) were used together with a standard control medium. The maximum biomass concentration on day 12 of batch cultures in control medium was 821 ± 71 mg L-1. Under identical conditions, in the best POME medium (20 % POME v/v in distilled water with other inorganic components), the biomass concentration was reduced by ∼11 % to 734 ± 66 mg L-1. The lipid content of the biomass grown in the control medium was 50.8 ± 4.5 % by dry weight, but was a little lower (48.9 ± 4.1 % by dry wt) in the above specified best POME medium. In the best POME medium, oleic acid was the major fatty acid (72.3 ± 5.2 % by weight) in the total lipids extracted from the biomass and monounsaturated fatty acids were the main type of fatty acids (74.6 ± 5.2 %). POME levels of >20 % in the medium suppressed both biomass and lipid production relative to the medium with 20 % POME.
Italian ryegrass is one of main feed for livestock animals/birds. It has potential antioxidant metabolites that can improve their health and protect them against various infectious diseases. In this work, we studied synthesis of silver nanoparticles assisted by forage crop Lolium multiflorum as a green synthesis way. Potential antibacterial efficacy of these synthesized nanosized silver nanoparticles against poultry pathogenic bacteria was then studied. Aqueous extract of IRG was used as reducing agent for bio-reduction of silver salt to convert Ag+ to Ag0 metallic nano-silver. Size, shape, metallic composition, functional group, and crystalline nature of these synthesized silver nanoparticles were then characterized using UV-Vis spectrophotometer, FESEM, EDX, FT-IT, and XRD, respectively. In addition, antibacterial effects of these synthesized AgNPs against poultry pathogenic bacteria were evaluated by agar well diffusion method. UV-Vis spectra showed strong absorption peak of 440-450 nm with differ reaction time ranging from 30 min to 24 h. FESEM measurements revealed particles sizes of around 20-100 nm, majority of which were spherical in shape while a few were irregular. These biosynthesized silver nanoparticles using IRG extract exhibited strong antibacterial activities against poultry pathogenic microorganisms, including Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, and Bacillus subtilis. Overall results confirmed that IRG plant extract possessed potential bioactive compounds for converting silver ions into nanosized silver at room temperature without needing any external chemical for redox reaction. In addition, such synthesized AgNPs showed strong antibacterial activities against pathogenic bacteria responsible for infectious diseases in poultry.
Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.
Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.
Here, we report the nearly complete genome sequences of nine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with the D614G mutation. These viruses were detected from various infected individuals with different levels of severity from Pahang, Malaysia. In addition, this study described the presence of lineage B.1.351 as a type of variant of concern (VOC) and lineages B.1.466.2 and B.1.524 as local variants.