The complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to "freeze" the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is difficult due to the lack of direct observation at micro- and nano-meter resolutions. In this study, high voltage transmission electron microscopy (HV-TEM) is employed to observe the morphological changes that occur in Cu6Sn5 between a Sn-3.0 wt%Ag-0.5 wt%Cu (SAC305) solder alloy and a Cu substrate in situ at temperatures above the solidus of the alloy. This enables the continuous surveillance of rapid grain boundary movements of Cu6Sn5 during soldering and increases the fundamental understanding of reaction mechanisms in solder solid/liquid interfaces.
In-situ observations of the polymorphic transformation in a single targeted Cu₆Sn₅ grain constrained between Sn-0.7 wt % Cu solder and Cu-Cu₃Sn phases and the associated structural evolution during a solid-state thermal cycle were achieved via a high-voltage transmission electron microscope (HV-TEM) technique. Here, we show that the monoclinic η'-Cu₆Sn₅ superlattice reflections appear in the hexagonal η-Cu₆Sn₅ diffraction pattern upon cooling to isothermal 140 °C from 210 °C. The in-situ real space imaging shows that the η'-Cu₆Sn₅ contrast pattern is initiated at the grain boundary. This method demonstrates a new approach for further understanding the polymorphic transformation behavior on a real solder joint.
Serum is commonly used as a specimen in immunoassays but the presence of heterophilic antibodies can potentially interfere with the test results. Previously, we have developed a microfluidic device called: 3D Stack for enzyme-linked immunosorbent assay (ELISA). However, its evaluation was limited to detection from a single protein solution. Here, we investigated the sensitivity of the 3D Stack in detecting a severe dengue biomarker-soluble CD163 (sCD163)-within the serum matrix. To determine potential interactions with serum matrix, a spike-and-recovery assay was performed, using 3D Stacks with and without surface modification by an EDC-NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) coupling. Without surface modification, a reduced analyte recovery in proportion to serum concentration was observed because of the Vroman effect, which resulted in competitive displacement of coated capture antibodies by serum proteins with stronger binding affinities. However, EDC-NHS coupling prevented antibody desorption and improved the sensitivity. Subsequent comparison of sCD163 detection using a 3D Stack with EDC-NHS coupling and conventional ELISA in dengue patients' sera revealed a high correlation (R = 0.9298, p < 0.0001) between the two detection platforms. Bland-Altman analysis further revealed insignificant systematic error between the mean differences of the two methods. These data suggest the potentials of the 3D Stack for further development as a detection platform.