The adsorption of tributyltin (TBT), onto three mesoporous silica adsorbents functionalized with calix[4]arene, p-tert-butylcalix[4]arene and p-sulfonatocalix[4]arene (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively) has been compared. Batch adsorption experiments were carried out and the effect of contact time, initial TBT concentration, pH and temperature were studied. The Koble-Corrigan isotherm was the most suitable for data fitting. Based on a Langmuir isotherm model, the maximum adsorption capacities were 12.1212, 16.4204 and 7.5757 mg/g for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively. The larger uptake and stronger affinity of MCM-TDI-PC4 than MCM-TDI-C4 and MCM-TDI-C4S probably results from van der Waals interactions and the pore size distribution of MCM-TDI-PC4. Gibbs free energies for the three adsorption processes of TBT presented a negative value, reflecting that TBT/surface interactions are thermodynamic favorable and spontaneous. The interaction processes were accompanied by an increase of entropy value for MCM-TDI-C4 and MCM-TDI-C4S (43.7192 and 120.7609 J/mol K, respectively) and a decrease for MCM-TDI-PC4 (-37.4704 J/mol K). It is obviously observed that MCM-TDI-PC4 spontaneously adsorbs TBT driven mainly by enthalpy change, while MCM-TDI-C4 and MCM-TDI-C4S do so driven mainly by entropy changes.
Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river.
This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.
The deprotonated Schiff base ligand in the title salt, [Ni(C(9)H(10)N(3)O(2)S)(C(18)H(15)P)]Cl, functions as an N,O,S-chelating anion to the phosphine-coordinated nickel(II) atom, which exists in a distorted square-planar geometry. The hy-droxy group forms an intra-molecular O-H⋯O hydrogen bond. The two amino groups of the cation are hydrogen-bond donors to the chloride anion; the hydrogen bonds generate a chain structure running along the b axis.
The five-membered ring of the title compound Δ(1)-1,2,4-triazoline-5-thione, C(11)H(13)N(3)S, is almost planar (r.m.s. deviation = 0.009 Å); the phenyl ring is aligned at 84.6 (2)° with respect to the five-membered ring. The crystal studied was a racemic twin with an approximate 20% minor twin component. Weak inter-molecular C-H⋯N hydrogen bonding is present in the crystal structure.
In the title mol-ecule, C(8)H(9)N(3)O(3)S, the thio-semicarbazide =N-NH-C(=S)-NH- fragment is twist a different degree of twist in the three independent mol-ecules [dihedral angles = 7.6 (1), 11.6 (1) and 20.7 (1)°]. Intra-molecular O-H⋯N and O-H⋯O hydrogen bonds occur. In the crystal, the hydr-oxy and amino groups are hydrogen-bond donors and the O-H⋯O, O-H⋯S and N-H⋯O hydrogen bonds generate a layer motif.
The crystal structure of the title compound, (C(25)H(21)ClP)(2)[ZnCl(4)]·3H(2)O, consists of tetra-hedral phosphonium cations and tetra-hedral zincate anions; the water mol-ecules form weak hydrogen bonds to the anions. Two of the water mol-ecules are disordered over three sites in a 0.68:0.55:0.77 ratio.
In the title mol-ecule, C(10)H(13)N(3)O(3)S, the thio-semicarbazide =N-NH-C(=S)-NH- fragment is twisted with respect to the aromatic ring [dihedral angle = 20.5 (1)°]. A weak N-H⋯S hydrogen bond [3.480 (1) Å] links two mol-ecules about a center of inversion to generate a ring. The hydr-oxy groups are engaged in inter-molecular hydrogen bonding; the O-H⋯O and O-H⋯S hydrogen bonds generate a layer motif.
This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.
In the title complex, [Ni(C(20)H(10)Br(2)Cl(2)N(2)O(2))], the Ni(II) ion is coordinated by two phen-oxy O atoms and two imino N atoms of the tetradentate ligand, forming a slightly distorted square-planar environment. The mol-ecule is essentially planar, with an r.m.s. deviation of 0.088 Å for the mean plane defined by all non-H atoms in the mol-ecule.
In the title mol-ecule, C(10)H(13)N(3)O(3)S·2H(2)O, the thio-semi-carbazide =N-NH-C(=S)-NH- fragment [torsion angle = 0.2 (1)°] is nearly coplanar with the benzene ring [dihedral angle = 2.4 (1)°]. The benzene ring and semicarbazide moiety are located on opposite sites of the C=N bond, showing an E configuration. The hy-droxy, imino and water H atoms are engaged in extensive hydrogen bonding, forming a three-dimensional network.
The deprotonated Schiff base ligand in the title compound, [Ni(C(8)H(8)N(3)O(2)S)(C(18)H(15)P)]Cl, functions as an N,O,S-chelating anion to the phosphine-coordinated Ni atom, which exists in a distorted square-planar geometry. The hy-droxy group forms an intra-molecular O-H⋯O hydrogen bond. The two amino groups of the cation are hydrogen-bond donors to the chloride anion; the hydrogen bonds generate a chain structure running along the b axis.
PM10 airborne particles and soot deposit collected after a fire incident at a chemical store were analyzed in order to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs). The samples were extracted with 1:1 hexane-dichloromethane by ultrasonic agitation. The extracts were then subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The total PAHs concentrations in airborne particles and soot deposit were found to be 3.27 +/- 1.55 ng/m3 and 12.81 +/- 24.37 microg/g, respectively. Based on the molecular distributions of PAHs and the interpretation of their diagnostic ratios such as PHEN/(PHEN + ANTH), FLT/(FLT + PYR) and BeP/(BeP + BaP), PAHs in both airborne particles and soot deposit may be inferred to be from the same source. The difference in the value of IP/(IP + BgP) for these samples indicated that benzo[g, h, i] perylene and coronene tend to be attached to finer particles and reside in the air for longer periods. Comparison between the molecular distributions of PAHs and their diagnostic ratios observed in the current study with those reported for urban atmospheric and roadside soil particles revealed that they are of different sources.
A method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons. The consistent observation of large TL yield enhancement is strongly suggestive of surface-strain defects generation. For 6MeV irradiations of flat-fibre and PCF, respective TL yields per unit mass of about 12.0 and 17.5 times that of the undoped capillary-fibre have been observed. Similarly, by making a Ge-doped capillary-fibre into flat-fibre, the TL response is found to increase by some 6.0 times. Thus, in addition to TL from the presence of a dopant, the increase in fused surface areas of flat-fibres and PCF is seen to be a further important source of TL. The glow-curves of the undoped fibres have been analysed by computational deconvolution. Trap centre energies have been estimated and compared for the various fibre samples. Two trap centre types observed in capillary-fibre are also observed in flat-fibre and PCF. An additional trap centre in flat-fibre and one further trap centre in PCF are observed when compared to capillary fibre. These elevated-energy trap centres are linked with strain-generated defects in the collapsed regions of the flat fibre and PCF.
Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.
Bujang Valley is a well-known historical complex found in the north-west of peninsular Malaysia; more than 50 ancient monuments and hundreds of artefacts have been discovered throughout the area. The discovery of these suggests Bujang Valley to have been an important South East Asian trading centre over the period from the 10th to 14th centuries. Present work concerns thermoluminescence (TL) dating analysis of shards collected from a historic monument located at Pengkalan Bujang in Bujang Valley. All the shards were prepared using the fine grain technique and the additive dose method was applied in determining the paleodose of each shard. The annual dose rate was obtained by measuring the concentration of naturally occurring radionuclides (U, Th and K) in the samples and their surroundings. The TL ages of the shards were found to range between 330±21 years and 920±69 years, indicative of the last firing of the bricks and tiles from which the shards originated, some dating back to the period during which the historical complex remained active.
Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.