METHODS: In this paper, we propose a novel approach to distinguish colonic polyps by integrating several techniques, including a modified deep residual network, principal component analysis and AdaBoost ensemble learning. A powerful deep residual network architecture, ResNet-50, was investigated to reduce the computational time by altering its architecture. To keep the interference to a minimum, median filter, image thresholding, contrast enhancement, and normalisation techniques were exploited on the endoscopic images to train the classification model. Three publicly available datasets, i.e., Kvasir, ETIS-LaribPolypDB, and CVC-ClinicDB, were merged to train the model, which included images with and without polyps.
RESULTS: The proposed approach trained with a combination of three datasets achieved Matthews Correlation Coefficient (MCC) of 0.9819 with accuracy, sensitivity, precision, and specificity of 99.10%, 98.82%, 99.37%, and 99.38%, respectively.
CONCLUSIONS: These results show that our method could repeatedly classify endoscopic images automatically and could be used to effectively develop computer-aided diagnostic tools for early CRC detection.
Methodology: Tooth wear was evaluated on 190 dental models of Chinese Malaysian adults (age range: 20-60 years) using modified Kim's index to custom-derive a population specific linear equation. The same equation was validated further on new 60 dental casts.
Results and Conclusion: Regression analysis revealed good correlation between age and teeth wear and lower standard error of estimate. Test of regression on a test sample (n = 30 pairs, age range: 20-60 years) showed insignificant difference between predicted versus the actual age with statistically acceptable mean absolute difference. These data suggest that modified Kim's index can be used effectively in forensic age estimation.
METHOD: This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p