Displaying all 4 publications

Abstract:
Sort:
  1. Levesque DL, Lobban KD, Lovegrove BG
    PMID: 25155185 DOI: 10.1007/s00360-014-0858-4
    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.
  2. Levesque DL, Tuen AA, Lovegrove BG
    PMID: 29623412 DOI: 10.1007/s00360-018-1160-7
    Much of our knowledge of the thermoregulation of endotherms has been obtained from species inhabiting cold and temperate climates, our knowledge of the thermoregulatory physiology of tropical endotherms is scarce. We studied the thermoregulatory physiology of a small, tropical mammal, the large treeshrew (Tupaia tana, Order Scandentia) by recording the body temperatures of free-ranging individuals, and by measuring the resting metabolic rates of wild individuals held temporarily in captivity. The amplitude of daily body temperature (~ 4 °C) was higher in treeshrews than in many homeothermic eutherian mammals; a consequence of high active-phase body temperatures (~ 40 °C), and relatively low rest-phase body temperatures (~ 36 °C). We hypothesized that high body temperatures enable T. tana to maintain a suitable gradient between ambient and body temperature to allow for passive heat dissipation, important in high-humidity environments where opportunities for evaporative cooling are rare. Whether this thermoregulatory phenotype is unique to Scandentians, or whether other warm-climate diurnal small mammals share similar thermoregulatory characteristics, is currently unknown.
  3. Welman S, Tuen AA, Lovegrove BG
    Front Physiol, 2017;8:745.
    PMID: 29018365 DOI: 10.3389/fphys.2017.00745
    The observation of heterothermy in a single suborder (Strepsirrhini) only within the primates is puzzling. Given that the placental-mammal ancestor was likely a heterotherm, we explored the potential for heterothermy in a primate closely related to the Strepsirrhini. Based upon phylogeny, body size and habitat stability since the Late Eocene, we selected western tarsiers (Cephalopachus bancanus) from the island of Borneo. Being the sister clade to Strepsirrhini and basal in Haplorrhini (monkeys and apes), we hypothesized that C. bancanus might have retained the heterothermic capacity observed in several small strepsirrhines. We measured resting metabolic rate, subcutaneous temperature, evaporative water loss and the percentage of heat dissipated through evaporation, at ambient temperatures between 22 and 35°C in fresh-caught wild animals (126.1 ± 2.4 g). We also measured core body temperatures in free-ranging animals. The thermoneutral zone was 25-30°C and the basal metabolic rate was 3.52 ± 0.06 W.kg-1 (0.65 ± 0.01 ml O2.g-1.h-1). There was no evidence of adaptive heterothermy in either the laboratory data or the free-ranging data. Instead, animals appeared to be cold sensitive (Tb ~ 31°C) at the lowest temperatures. We discuss possible reasons for the apparent lack of heterothermy in tarsiers, and identify putative heterotherms within Platyrrhini. We also document our concern for the vulnerability of C. bancanus to future temperature increases associated with global warming.
  4. Thonis A, Ceballos RM, Tuen AA, Lovegrove BG, Levesque DL
    Physiol Biochem Zool, 2020 3 21;93(3):199-209.
    PMID: 32196407 DOI: 10.1086/708467
    Tropical ectotherms are generally believed to be more vulnerable to global heating than temperate species. Currently, however, we have insufficient knowledge of the thermoregulatory physiology of equatorial tropical mammals, particularly of small diurnal mammals, to enable similar predictions. In this study, we measured the resting metabolic rates (via oxygen consumption) of wild-caught lesser treeshrews (Tupaia minor, order Scandentia) over a range of ambient temperatures. We predicted that, similar to other treeshrews, T. minor would exhibit more flexibility in body temperature regulation and a wider thermoneutral zone compared with other small mammals because these thermoregulatory traits provide both energy and water savings at high ambient temperatures. Basal metabolic rate was on average

    1.03
    ±
    0.10

    mL O2 h-1 g-1, which is within the range predicted for a 65-g mammal. We calculated the lower critical temperature of the thermoneutral zone at 31.0°C (95% confidence interval: 29.3°-32.7°C), but using metabolic rates alone, we could not determine the upper critical temperature at ambient temperatures as high as 36°C. The thermoregulatory characteristics of lesser treeshrews provide a means of saving energy and water at temperatures well in excess of their current environmental temperatures. Our research highlights the knowledge gaps in our understanding of the energetics of mammals living in high-temperature environments, specifically in the equatorial tropics, and questions the purported lack of variance in the upper critical temperatures of the thermoneutral zone in mammals, emphasizing the importance of further research in the tropics.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links