This study investigated the catalytic co-pyrolysis of sugarcane bagasse (SCB) and waste high-density polyethylene (HDPE) over faujasite-type zeolite derived from electric arc furnace slag (FAU-EAFS) in a fixed-bed reactor. The effects of reaction temperature, catalyst-to-feedstock ratio, and HDPE-to-SCB ratio on product fractional yields and chemical compositions were discussed. The co-pyrolysis of SCB and HDPE over FAU-EAFS increased the liquid yield and enhanced the quality of bio-oil. The maximum bio-oil (68.56 wt%) and hydrocarbon yield (74.55%) with minimum yield of oxygenated compounds (acid = 0.57% and ester = 0.67%) were achieved under the optimum experimental conditions of catalyst-to-feedstock ratio of 1:6, HDPE-to-SCB ratio of 40:60, and temperature of 500 °C. The oil produced by catalytic co-pyrolysis had higher calorific value than the oil produced by the pyrolysis of SCB alone.
Zika virus (ZIKV) was first isolated in Asia from mosquitoes from Malaysia in 1966. However, the incidence of Zika and Zika-related neurological complications in Asia is not well known. The few studies of Zika in Asia have been inconsistent in pointing to likely transmission levels, with some studies suggesting substantial transmission and others not. Interpretation of existing epidemiological and public health data from Asia is constrained by the non-specific symptomatology of Zika, the high proportion of subclinical ZIKV infections, relatively low viremia, and the lack of accurate serological assays. Here, we update the status of Zika cases from countries in Asia, and highlight some key knowledge gaps. In particular, accurate determinations of the incidence of Zika-related congenital Zika syndrome should be a priority for Zika research in Asia. Additional information will be critical to make informed strategies for the prevention and control of this global public health threat.
Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
Protein adsorption onto membrane surfaces is important in fields related to separation science and biomedical research. This study explored the molecular interactions between protein, bovine serum albumin (BSA), and nitrocellulose films (NC) using electrokinetic phenomena and the effects of these interactions on the streaming potential measurements for different membrane pore morphologies and pH conditions. The data were used to calculate the streaming ratios of membranes-to-proteins and to compare these values to the electrostatic or hydrophobic attachment of the protein molecules onto the NC membranes. The results showed that different pH and membrane pore morphologies contributes to different protein adsorption mechanisms. The protein adsorption was significantly reduced under conditions where the membrane and protein have like-charges due to electrostatic repulsion. At the isoelectric point (IEP) of the protein, the repulsion between the BSA and the NC membrane was at the lowest; thus, the BSA could be easily attached onto the membrane/solution interface. In this case, the protein was considered to be in a compact layer without intermolecular protein repulsions.
The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.
Natural organic matters (NOMs) have been found to be the major foulant in the application of ultrafiltration (UF) for treating surface water. Against this background, although hydrophilicity has been demonstrated to aid fouling mitigation, other parameters such as membrane surface morphology may contribute equally to improved fouling resistance. In this work, with humic acid solution as the model substance, the effects of titanium dioxides (TiO2) types (PC-20, P25, and X500) on membrane anti-fouling and defouling properties were comparatively analysed. The aims are (1) to determine the correlation between membrane surface morphology and membrane fouling and (2) to investigate the anti-fouling and UV-cleaning abilities of PVDF/TiO2 mixed-matrix membranes with different membrane topographies and surface energy conditions. The mixed-matrix membrane with P25 TiO2 exhibited the most significant UV-defouling ability, with a high irreversible flux recovery ratio (IFRR(UV)) of 16.56 after 6 h of UV irradiation, whereas that with X500 TiO2 exhibited both superior anti-fouling and defouling properties due to its smoother surface and its highly reactive surface layer.
This study investigates the toxicity of bare iron oxide nanoparticles (IONPs) and surface functionalization iron oxide nanoparticles (SF-IONPs) to the growth of freshwater microalgae Chlorella sp. This study is important due to the increased interest on the application of the magnetic responsive IONPs in various fields, such as biomedical, wastewater treatment, and microalgae harvesting. This study demonstrated that the toxicity of IONPs was mainly contributed by the indirect light shading effect from the suspending nanoparticles which is nanoparticles concentration-dependent, direct light shading effect caused by the attachment of IONPs on cell and the cell aggregation, and the oxidative stress from the internalization of IONPs into the cells. The results showed that the layer of poly(diallyldimethylammonium chloride) (PDDA) tended to mask the IONPs and hence eliminated oxidative stress toward the protein yield but it in turn tended to enhance the toxicity of IONPs by enabling the IONPs to attach on cell surfaces and cause cell aggregation. Therefore, the choice of the polymer that used for surface functionalize the IONPs is the key factor to determine the toxicity of the IONPs.
Magnetic collection of the microalgae Chlorella sp. from culture media facilitated by low-gradient magnetophoretic separation is achieved in real time. A removal efficiency as high as 99% is accomplished by binding of iron oxide nanoparticles (NPs) to microalgal cells in the presence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) as a binder and subsequently subjecting the mixture to a NdFeB permanent magnet with surface magnetic field ≈6000 G and magnetic field gradient <80 T m(-1) . Surface functionalization of magnetic NPs with PDDA before exposure to Chlorella sp. is proven to be more effective in promoting higher magnetophoretic removal efficiency than the conventional procedure, in which premixing of microalgal cells with binder is carried out before the addition of NPs. Rodlike NPs are a superior candidate for enhancing the magnetophoretic separation compared to spherical NPs due to their stable magnetic moment that originates from shape anisotropy and the tendency to form large NP aggregates. Cell chaining is observed for nanorod-tagged Chlorella sp. which eventually fosters the formation of elongated cell clusters.