Displaying all 3 publications

Abstract:
Sort:
  1. Lim HP, Liew WYH, Melvin GJH, Jiang ZT
    Materials (Basel), 2021 Mar 29;14(7).
    PMID: 33805462 DOI: 10.3390/ma14071677
    This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600-1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.
  2. Hassan N, Minakshi M, Ruprecht J, Liew WYH, Jiang ZT
    Materials (Basel), 2023 Feb 08;16(4).
    PMID: 36837062 DOI: 10.3390/ma16041434
    For thermal energy storage, the most promising method that has been considered is latent heat storage associated with molten salt mixtures as phase-change material (PCM). The binary salt mixture lithium chloride-lithium hydroxide (LiCl-LiOH) with a specific composition can store thermal energy. However, to the best of our knowledge, there is no information on their thermal stability in previous literature. The key objectives of this article were to investigate the thermophysical properties, thermal repeatability, and thermal decomposition behavior of the chosen binary salt mixture. FactSage software was used to determine the composition of the binary salt mixture. Thermophysical properties were investigated with a simultaneous thermal analyzer (STA). The thermal results show that the binary salt 32 mol% LiCl-68 mol% LiOH melts within the range of 269 °C to 292 °C and its heat of fusion is 379 J/g. Thermal repeatability was tested with a thermogravimetric analyzer (TGA) for 30 heating and cooling cycles, which resulted in little change to the melting temperature and heat of fusion. Thermal decomposition analysis indicated negligible weight loss until 500 °C and showed good thermal stability. Chemical and structural instability was verified by X-ray diffraction (XRD) by analysing the binary salt system before and after thermal treatment. A minor peak corresponding to lithium oxide was observed in the sample decomposed at 700 °C which resulted from the decomposition of LiOH at high temperature. The morphology and elemental distribution examinations of the binary salt mixture were carried out via scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). X-ray photoelectron spectroscopy was conducted for surface analysis, and their elemental composition verified the chemical stability of the binary salt mixture. Overall, the results confirmed that the binary salt mixture is a potential candidate to be used as thermal energy storage material in energy storage applications of up to 500 °C.
  3. Karen WMJ, Wong CY, Wang Z, Liew WYH, Melvin GJH
    Environ Technol, 2023 Jan;44(3):326-333.
    PMID: 34407722 DOI: 10.1080/09593330.2021.1970820
    This study demonstrated the generation of clean water from seawater collected at the beach coast in Universiti Malaysia Sabah, Malaysia, with carbonized rice husk coated melamine sponge as solar absorber by a solar still. Melamine sponge was utilized as a seawater transportation medium since its porous structure is excellent in channelling the seawater. Whereas carbonized rice husk was used as the photothermal conversion material for its efficient heat absorption due to its black colour and porous structure. Implementing air gap between the seawater body and solar absorber, and restricted water pathway assisted in localizing heat on the top surface of the solar absorber. Clean water was generated under direct solar radiation during the day at an open space with average solar intensity around 1.1∼1.2 kW/m2 (slightly higher than 1 sun) for about 4 h. Efficiency of the solar absorber was calculated, while the quality of the generated clean water was observed in terms of salinity and pH value. Insulated solar still with carbon-coated sponge showed the highest efficiency at about 54.74%. Salinity of the collected clean water significantly reduced to consumable level which was approximately 55 ppm, and the pH value at about 6.73 where it was within the safe limit of the drinkable water pH.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links