Displaying all 3 publications

Abstract:
Sort:
  1. Yang QH, Zhang Y, Zhang XM, Li XR
    Int J Ophthalmol, 2019;12(2):302-311.
    PMID: 30809489 DOI: 10.18240/ijo.2019.02.19
    AIM: To investigate the pooled prevalence of diabetic retinopathy (DR), proliferative DR (PDR) and nonproliferative DR (NPDR) in Asian type 2 diabetes mellitus (T2DM) patients.
    METHODS: We performed a systematic search online search using PubMed, EMBASE, Web of Science, the Cochrane Library, and China WeiPu Library to identify eligible studies that reported the prevalence of DR, PDR and NPDR in Asian T2DM patients. Effect size (ES) with 95% confidence interval (CI) was used to evaluate the prevalence of DR, PDR and NPDR in Asian T2DM patients, respectively.
    RESULTS: There were 41 references and 48 995 T2DM patients involved in this study. The prevalence of DR, PDR, and NPDR was 28%, 6%, and 27% in T2DM patients, respectively; while the prevalence of PDR and NPDR in DR patients was 17% and 83%, respectively. Subgroup analysis showed that prevalence of DR in T2DM patients from Singaporean, Indian, South Korean, Malaysian, Asian, and Chinese was 33%, 42%, 16%, 35%, 21% and 25%, respectively. In T2DM patients with NPDR from Indian, South Korean, Malaysian, Asian, Chinese, higher prevalence was found than that in PDR patients (45% vs 17%, 13% vs 3%, 30% vs 5%, 23% vs 2% and 22% vs 3%), as well as in DR patients (74% vs 26%, 81% vs 19%, 86% vs 14%, 92% vs 8% and 85% vs 15%). The prevalence of PDR in T2DM from India was higher than patients from other locations of Asia, and the same results were also observed in NPDR patients.
    CONCLUSION: In either T2DM Asian patients or DR patients, NPDR is more common than PDR. Based on our results, we should pay more attention to NPDR screening and management in T2DM patients, and we also recommend suitable interventions to prevent its progression.
  2. Li S, Lu BP, Feng J, Zhou JJ, Xie ZZ, Liang C, et al.
    Trop Biomed, 2020 Dec 01;37(4):852-863.
    PMID: 33612738 DOI: 10.47665/tb.37.4.852
    Fructose-1,6-bisphosphate aldolase (FbA), a well characterized glycometabolism enzyme, has been found to participate in other important processes besides the classic catalysis. To understand the important functions of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis (CsFbAs, CsFbA-1/2/3) in host-parasite interplay, the open reading frames of CsFbAs were cloned into pET30a (+) vector and the resulting recombinant plasmids were transformed into Escherichia coli BL21 (DE3) for expression of the proteins. Purified recombinant CsFbAs proteins (rCsFbAs) were approximately 45.0 kDa on 12% SDS-PAGE and could be probed with each rat anti-rCsFbAs sera by western blotting analysis. ELISA and ligand blot overlay indicated that rCsFbAs of 45.0 kDa as well as native CsFbAs of 39.5 kDa from total worm extracts and excretory-secretory products of Clonorchis sinensis (CsESPs) could bind to human plasminogen, and the binding could be efficiently inhibited by lysine analog ε-aminocaproic acid. Our results suggested that as both the components of CsESPs and the plasminogen binding proteins, three CsFbAs might be involved in preventing the formation of the blood clot so that Clonorchis sinensis could acquire enough nutrients from host tissue for their successful survival and colonization in the host. Our work will provide us with new information about the biological function of three CsFbAs and their roles in hostparasite interplay.
  3. Liao T, Li XR, Fan L, Zhang B, Zheng WM, Hua JJ, et al.
    Front Microbiol, 2024;15:1433127.
    PMID: 39234548 DOI: 10.3389/fmicb.2024.1433127
    Kombucha, a fermented tea prepared with a symbiotic culture of bacteria and yeast (SCOBY), offers a unique and unpredictable home-brewed fermentation process. Therefore, the need for a controlled kombucha fermentation process has become evident, which requiring a thorough understanding of the microbial composition and its relationship with the metabolites produced. In this study, we investigated the dynamics of microbial communities and metabolites over a 12-day fermentation period of a conventional kombucha-making process. Our findings revealed similarities between the microbial communities in the early (0-2 days) and late (10-12 days) fermentation periods, supporting the principle of back-slopping fermentation. Untargeted metabolite analysis unveiled the presence of harmful biogenic amines in the produced kombucha, with concentrations increasing progressively throughout fermentation, albeit showing relatively lower abundance on days 8 and 12. Additionally, a contrasting trend between ethanol and caffeine content was observed. Canonical correspondence analysis highlighted strong positive correlations between specific bacterial/yeast strains and identified metabolites. In conclusion, our study sheds light on the microbial and metabolite dynamics of kombucha fermentation, emphasizing the importance of microbial control and quality assurance measures in the production process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links