Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Wen WX, Leong CO
    PLoS One, 2019;14(4):e0215381.
    PMID: 31022191 DOI: 10.1371/journal.pone.0215381
    Immune checkpoint inhibitors have demonstrated effective anti-tumour response in cancer types with high mutation burden (e.g. melanoma) and in subset of cancers with features of genomic instability (e.g. mismatch-repair deficiency). One possible explanation for this effect is the increased expression of immune checkpoint molecules and pre-existing adaptive immune response in these cancers. Given that BRCA1 and BRCA2 are integral in maintaining genomic integrity, we hypothesise that the inactivation of these genes may give rise to breast cancers with such immunogenic phenotype. Therefore, using two large series of publicly available breast cancer datasets, namely that from The Cancer Genome Atlas and Wellcome Trust Institute, we sought to investigate the association between BRCA1- and BRCA2-deficiency with features of genomic instability, expression of PD-L1 and PD-1, landscape of inferred tumour-infiltrating immune cells, and T-cell inflamed signature in breast cancers. Here, we report that BRCA1 and BRCA2-deficient breast cancers were associated with features of genomic instability including increased mutation burden. Interestingly, BRCA1-, but not BRCA2-, deficient breast cancers were associated with increased expression of PD-L1 and PD-1, higher abundance of tumour-infiltrating immune cells, and enrichment of T cell-inflamed signature. The differences in immunophenotype between BRCA1- and BRCA2-deficient breast cancers can be attributed, in part, to PTEN gene mutation. Therefore, features of genomic instability such as that mediated by BRCA1- and BRCA2- deficiency in breast cancer were necessary, but not always sufficient, for yielding T cell-inflamed tumour microenvironment, and by extension, predicting clinical benefit from immunotherapy.
  2. Tiong KH, Mah LY, Leong CO
    Apoptosis, 2013 Dec;18(12):1447-68.
    PMID: 23900974 DOI: 10.1007/s10495-013-0886-7
    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
  3. Lim LY, Vidnovic N, Ellisen LW, Leong CO
    Br. J. Cancer, 2009 Nov 3;101(9):1606-12.
    PMID: 19773755 DOI: 10.1038/sj.bjc.6605335
    p53 is the most commonly mutated tumour-suppressor gene in human cancers. Unlike other tumour-suppressor genes, most p53 cancer mutations are missense mutations within the core domain, leading to the expression of a full-length mutant p53 protein. Accumulating evidence has indicated that p53 cancer mutants not only lose tumour suppression activity but also gain new oncogenic activities to promote tumourigenesis.
  4. Chung FF, Mai CW, Ng PY, Leong CO
    Curr Cancer Drug Targets, 2016;16(1):71-8.
    PMID: 26563883
    Cytochrome P450, family 2, subfamily W, polypeptide 1 (CYP2W1) is a newly identified monooxygenase enzyme that is expressed specifically in tumor tissues and during fetal life. Particularly, high expression of CYP2W1 was observed in up to 60% of colorectal cancers and its expression correlated with poor survival. CYP2W1 has been shown to metabolize various endogenous substrates including lysophospholipids and several procarcinogens, such as polycyclic aromatic hydrocarbon. The specific substrate for CYP2W1, however, is currently unknown. Due to its tumor-specific expression and its unique catalytic activities in colorectal cancers, CYP2W1 was deemed as an interesting target in colorectal cancer therapy. This review sought to summarize the current understanding of the CYP2W1 biology and biochemistry, its genetic polymorphisms and cancer risk, and its implication as a tumor-specific diagnostic and therapeutic target.
  5. Nair RS, Morris A, Billa N, Leong CO
    AAPS PharmSciTech, 2019 Jan 10;20(2):69.
    PMID: 30631984 DOI: 10.1208/s12249-018-1279-6
    Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
  6. Ong LC, Chung FF, Tan YF, Leong CO
    Arch Toxicol, 2016 Jan;90(1):103-18.
    PMID: 25273022 DOI: 10.1007/s00204-014-1376-6
    Carbon nanotubes (CNTs) are an important class of nanomaterials, which have numerous novel properties that make them useful in technology and industry. Generally, there are two types of CNTs: single-walled nanotubes (SWNTs) and multi-walled nanotubes. SWNTs, in particular, possess unique electrical, mechanical, and thermal properties, allowing for a wide range of applications in various fields, including the electronic, computer, aerospace, and biomedical industries. However, the use of SWNTs has come under scrutiny, not only due to their peculiar nanotoxicological profile, but also due to the forecasted increase in SWNT production in the near future. As such, the risk of human exposure is likely to be increased substantially. Yet, our understanding of the toxicological risk of SWNTs in human biology remains limited. This review seeks to examine representative data on the nanotoxicity of SWNTs by first considering how SWNTs are absorbed, distributed, accumulated and excreted in a biological system, and how SWNTs induce organ-specific toxicity in the body. The contradictory findings of numerous studies with regards to the potential hazards of SWNT exposure are discussed in this review. The possible mechanisms and molecular pathways associated with SWNT nanotoxicity in target organs and specific cell types are presented. We hope that this review will stimulate further research into the fundamental aspects of CNTs, especially the biological interactions which arise due to the unique intrinsic characteristics of CNTs.
  7. Nair RS, Billa N, Leong CO, Morris AP
    Pharm Dev Technol, 2021 Feb;26(2):243-251.
    PMID: 33274672 DOI: 10.1080/10837450.2020.1860087
    Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm to 79.6 ± 3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation studies using full-thickness human skin showed that the permeation of gamma-T3 from the TRF ethosomal formulations was significantly higher (p 
  8. Chan HH, Koh RY, Lim CL, Leong CO
    Curr Alzheimer Res, 2019;16(10):907-918.
    PMID: 31642777 DOI: 10.2174/1567205016666191023102422
    Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.
  9. Chan HH, Leong CO, Lim CL, Koh RY
    J Cell Mol Med, 2022 Feb 02.
    PMID: 35106914 DOI: 10.1111/jcmm.17095
    Alzheimer's disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor-interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain-like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta-amyloid (Aβ)-induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH-SY5Y human neuroblastoma cells treated with Aβ 1-40 or Aβ 1-42. We showed that Aβ-induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL-dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aβ-induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aβ can potentially drive necroptosis in an RIPK1-MLKL-dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.
  10. Mai CW, Chung FF, Leong CO
    Curr Drug Targets, 2017;18(11):1259-1268.
    PMID: 27993111 DOI: 10.2174/1389450117666161216125344
    BACKGROUND: Recent reports indicate that the tumor microenvironment plays a pivotal role in cancer development and progression, leading to a paradigm shift in the way cancer is studied and targeted. In contrast to traditional approaches, where only tumor cells are targeted for the treatment, an emerging approach is to develop therapeutics which target the tumor microenvironment while complementing or enhancing current treatments. Legumain (LGMN) is a newly identified target which is highly expressed in the tumor microenvironment and in tumor cells, and holds potential both as a biomarker and as a therapeutic target.

    CONCLUSION: This review will be the first to summarize the expression of LGMN in common cancers, as well as its roles in tumorigenesis and metastasis. This review also discusses the current developments and future prospects of targeting LGMN through the development of DNA vaccines, azopeptides, small molecule inhibitors and LGMN activated prodrugs, highlighting the potential of LGMN as a target for cancer therapeutics.

  11. Chong YS, Mai CW, Leong CO, Wong LC
    Cutan Ocul Toxicol, 2018 Mar;37(1):52-60.
    PMID: 28554225 DOI: 10.1080/15569527.2017.1335748
    PURPOSE: Dysfunction of the microRNA (miRNA)-processing enzyme DICER1 and Alu RNA accumulation are linked to the pathogenesis of age-related macular degeneration (AMD). This study determined the optimal dose of lutein (LUT) and zeaxanthin (ZEA) to protect human retinal pigment epithelium (RPE) cells against hydrogen peroxide (H2O2). The effect of the optimal dose of LUT and ZEA as DICER1 and Alu RNA modulators in cultured human RPE cells challenged with H2O2 was investigated.

    MATERIALS AND METHODS: ARPE-19 cells were pre-treated with LUT, ZEA, or both for 24 h before 200 μM H2O2 challenge. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. DICER1 and Alu RNA were quantified by western blotting and real-time polymerase chain reaction, respectively.

    RESULTS: H2O2 increased cell Alu RNA expression and decreased cell viability of ARPE-19, but had no significant impact on the DICER1 protein level. LUT, alone and in combination with ZEA pre-treatment, prior to H2O2 challenge significantly improved cell viability of ARPE-19 and reduced the level of Alu RNA compared to the negative control.

    CONCLUSIONS: These results support the use of LUT alone, and in combination with ZEA, in AMD prevention and treatment. This study is also the first to report LUT modulating effects on Alu RNA.

  12. Su ZY, Siak PY, Leong CO, Cheah SC
    Front Microbiol, 2023;14:1116143.
    PMID: 36846758 DOI: 10.3389/fmicb.2023.1116143
    Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
  13. Aminuddin A, Ng PY, Leong CO, Chua EW
    Sci Rep, 2020 May 12;10(1):7885.
    PMID: 32398775 DOI: 10.1038/s41598-020-64664-3
    Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
  14. Looi CK, Chung FF, Leong CO, Wong SF, Rosli R, Mai CW
    J Exp Clin Cancer Res, 2019 Apr 15;38(1):162.
    PMID: 30987642 DOI: 10.1186/s13046-019-1153-8
    BACKGROUND: Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME).

    MAIN BODY: In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME.

    CONCLUSIONS: It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.

  15. Chappel L, Wong LC, Leong CO, Mai CW, Meikle IT, Stanforth SP, et al.
    Bioorg Med Chem Lett, 2020 02 15;30(4):126910.
    PMID: 31882300 DOI: 10.1016/j.bmcl.2019.126910
    Six N-nitroaryl-2-amino-1,3-dichloropropane derivatives have been prepared and evaluated against 18 cancer cell lines and two non-cancerous cell lines. Analysis of cell viability data and IC50 values indicated that the presence of a trifluoromethyl group in the nitroaryl moiety is an important structural feature associated with the compounds' cytotoxicities.
  16. Low SY, Tan BS, Choo HL, Tiong KH, Khoo AS, Leong CO
    Cancer Lett, 2012 Jan 28;314(2):166-75.
    PMID: 22033244 DOI: 10.1016/j.canlet.2011.09.025
    The efficacy of cisplatin for treating nasopharyngeal carcinoma (NPC) is limited by the dose-related toxicities and the development of resistance to cisplatin. Recent studies have shown that B cell lymphoma-2 (BCL-2) is overexpressed and confers chemoresistance in NPC. Thus, targeted therapy against BCL-2 may enhance the antitumour effects of chemotherapy by sensitizing the tumor cells to undergo apoptosis. This study evaluated the combined effects of BCL-2 inhibition and cisplatin in NPC cells. Our results demonstrate that inhibition of BCL-2 by small-hairpin RNA (shRNA) or the BCL-2 inhibitor YC137, synergizes cisplatin sensitivity in NPC cells that overexpress BCL-2. We also show that YC137 enhance cisplatin-induced apoptosis in HK1 and CNE1 cells through suppression of BCL-2 protein expression, induction of mitochondrial depolarization and activation of caspase 9 and caspase 3/7. These findings suggest that the combination of BCL-2 inhibition and cisplatin represents a promising strategy for treating NPC.
  17. Chan HH, Leong YQ, Voon SM, Pan ML, Leong CO, Lim CL, et al.
    Rep Biochem Mol Biol, 2021 Jan;9(4):417-425.
    PMID: 33969135 DOI: 10.52547/rbmb.9.4.417
    Background: Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells.

    Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.

    Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.

    Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.

  18. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC
    Crit Rev Oncol Hematol, 2018 Jan;121:11-22.
    PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010
    E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links