Displaying all 4 publications

Abstract:
Sort:
  1. Womersley FC, Rohner CA, Abrantes K, Afonso P, Arunrugstichai S, Bach SS, et al.
    Sci Total Environ, 2024 Apr 30.
    PMID: 38697520 DOI: 10.1016/j.scitotenv.2024.172776
    The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus), shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of vessel collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated potential collision mitigation options estimated a minimal impact to industry, as most whale shark core habitat areas were relatively small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to collision mitigation is needed within priority whale shark habitats to ensure collision protection for the species.
  2. MacNeil MA, Chapman DD, Heupel M, Simpfendorfer CA, Heithaus M, Meekan M, et al.
    Nature, 2020 07;583(7818):801-806.
    PMID: 32699418 DOI: 10.1038/s41586-020-2519-y
    Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.
  3. MacNeil MA, Chapman DD, Heupel M, Simpfendorfer CA, Heithaus M, Meekan M, et al.
    Nature, 2020 09;585(7825):E11.
    PMID: 32848253 DOI: 10.1038/s41586-020-2692-z
    An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
  4. Simpfendorfer CA, Heithaus MR, Heupel MR, MacNeil MA, Meekan M, Harvey E, et al.
    Science, 2023 Jun 16;380(6650):1155-1160.
    PMID: 37319199 DOI: 10.1126/science.ade4884
    A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links