Displaying all 4 publications

Abstract:
Sort:
  1. Khoo, Gideon, Lim, Tit Meng, Phang, Violet Pan Eng
    MyJurnal
    Since the early 1950’s, Singapore is internationally known as the guppy-breeding centre. At least 40 different colour varieties of guppies are cultured in Singapore, with each farm specialising in 10 to 15 varieties. These fancy varieties have been developed by skilful farmers through intensive and continual selective breeding. Genes controlling background body pigmentation such as albino (a), blond (b), gold (g) and blue (r) are autosomally inherited and recessive to their wild-type alleles which produce drab olive-brown background coloration. Colour patterns which are superimposed onto wild-type background coloration are due to genes located on the sex chromosomes. These
    sex-linked colour genes are dominant and sex-limited to males as their expression requires male hormones. Y-linked colour pattern genes carried by males are inherited only along the paternal line while X-linked genes are present in both sexes. Among the guppy varieties produced locally, only two Y-linked genes, Ssb and Sst, that control snakeskin tail and body patterns, respectively, have been found in varieties with snakeskin-like reticulations. Single colour genes that are both X- and Y-linked produce red (Rdt), blue (Blt), green (Grt), black (Bt) and variegated (Var) patterns
    on the caudal fin. The black caudal-peduncle of the Tuxedo variety is the result of Bcp, a gene that is both X- and Ylinked. Different combinations of colour pattern genes and background pigmentation genes as well as interactions among them give rise to various colour phenotypes. For
    instance, the inclusion of Bcp in Snakeskin varieties causes black reticulations on the tail fin to be replaced by large, coarse black spots. Neon coloration is produced by interactions between the Ln (light turquoise) gene with Blt, Rdt and Bcp.
  2. Ng CK, Ooi PA, Wong WL, Khoo G
    J Environ Manage, 2020 Feb 01;255:109829.
    PMID: 31783208 DOI: 10.1016/j.jenvman.2019.109829
    Anthropogenic pressures are causing substantial degradation to the freshwater ecosystems globally and Malaysia has not escaped such a bleak scenario. Prompted by the predicament, this study's objective was to pioneer a river assessment system that can be readily adopted to monitor, manage and drive improvement in a wholesome manner. Three sets of a priori metrics were selected to form the Ichthyofaunal Quality Index (IQI: biological), Water Quality Index (WQI: chemical) and River Physical Quality Index (RPQI: physical). These indices were further integrated on equal weighting to construct a novel Malaysian River Integrity Index (MyRII). To test its robustness, the MyRII protocol was field tested in four eco-hydrological zones located in the Kampar River water basin for 18 months to reveal its strengths, weaknesses, and establish the "excellent", "good", "average", "poor" and "impaired" thresholds based on the "best performer" reference site in an empirical manner. The resultant MyRII showed a clear trend that corresponded with different levels of river impairment. Test site zone A which was a reference site with minimal disturbance achieved the highest MyRII (88.95 ± 4.29), followed by partially disturbed zone B (61.95 ± 5.90) and heavily disturbed zone C (50.00 ± 4.29). However, the MyRII in zone D (59.9 ± 6.39), which was a heavily disturbed wetland that was disjointed from the river, did not conform to such trend. Also unveiled and recognized, however, are some unexpected nuances, limitations and challenges that emerged from this study. These are critically discussed as precautions when interpreting and implementing the MyRII protocol. This study adds to the mounting body of evidence that water resource stakeholders and policymakers must look at the big picture and adopt the "balanced ecosystem" mind-set when assessing, restoring and managing the rivers as a freshwater resource.
  3. Ng CK, Kong RW, Foo GH, Khoo G
    Environ Monit Assess, 2022 Dec 24;195(1):228.
    PMID: 36565392 DOI: 10.1007/s10661-022-10789-z
    The agriculture sector responsible for global food and nutrition security has an urgent need to examine climatic trends so that adaptations can be exercised in advance. Freely available dataset from satellite sources can greatly ease rainfall analysis, especially for smallholder farmers who typically operate under limited resources. Tests to determine their accuracy, however, are so far not deployed in tropical Southeast Asia. We compared in situ observations with dataset from the Global Satellite Mapping of Precipitation (GSMaP) and the Prediction of Worldwide Energy Resources (POWER) in two sites located 180 km apart in the tropical Malay Peninsula for 30 days. We found that in situ precipitation values were markedly overestimated by GSMaP (34.9-67.5%) and POWER (180.5-289.2%), and the possible reasons are discussed. Nonetheless, we conclude that GSMaP remains the best hope for smallholder farmers and its dataset can still be used under the precaution of error margins determined by the practical method described herein.
  4. Ng CK, Goh CH, Lin JC, Tan MS, Bong W, Yong CS, et al.
    Environ Monit Assess, 2018 Jun 15;190(7):402.
    PMID: 29904816 DOI: 10.1007/s10661-018-6784-2
    El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links