OBJECTIVE: The present study intends to monitor variations in deaths and identify the growth phases such as pre-growth, growth, and post-growth phases in Pakistan due to the COVID-19 pandemic.
METHODS: New approaches are needed that display the death patterns and signal an alarming situation so that corrective actions can be taken before the condition worsens. To meet this purpose, secondary data on daily reported deaths due to the COVID-19 pandemic have been considered, and the $c$ and exponentially weighted moving average (EWMA) control charts are used To meet this purpose, secondary data on daily reported deaths in Pakistan due to the COVID-19 pandemic have been considered. The $ c$ and exponentially weighted moving average (EWMA) control charts have been used for monitoring variations.
RESULTS: The chart shows that Pakistan switches from the pre-growth to the growth phase on 31 March 2020. The EWMA chart demonstrates that Pakistan remains in the growth phase from 31 March 2020 to 17 August 2020, with some indications signaling a decrease in deaths. It is found that Pakistan moved to a post-growth phase for a brief period from 27 July 2020 to 28 July 2020. Pakistan switches to re-growth phase with an alarm on 31/7/2020, right after the short-term post-growth phase. The number of deaths starts decreasing in August in that Pakistan may approach the post-growth phase shortly.
CONCLUSION: This amalgamation of control charts illustrates a systematic implementation of the charts for government leaders and forefront medical teams to facilitate the rapid detection of daily reported deaths due to COVID-19. Besides government and public health officials, it is also the public's responsibility to follow the enforced standard operating procedures as a temporary remedy of this pandemic in ensuring public safety while awaiting a suitable vaccine to be discovered.
METHODS: After the extraction of the crude oil of the plant, they were tested against a Gentamycin (GM)-treated group of Swiss Albino mice for their nephroprotective action. Animals were divided into six (6) equal groups with five (5) animals in each group. These groups were: control group (0.5 mL normal saline via intraperitoneal -i.p), gentamycin group (gentamycin 100 mg/kg i.p), Silymarin + gentamycin group (Silymarin 50 mg/kg and gentamycin 100 mg/kg i.p), plant extract (AHcr1) and gentamycin group (AHcr1 250 mg/kg and gentamycin 100 mg/kg i.p), AHcr2 + gentamycin group (AHcr2; 500 mg/kg and gentamycin 100 mg/kg i.p) and the hexane oil fraction (AHO) + gentamycin (AHO 1 mL/kg and GM 100 mg/kg i.p). After completion of doses, animals were sacrificed for the collection of blood to further investigate biochemical changes and histopathological changes in kidney tissues.
RESULTS: Serum creatinine, urea, and blood urea nitrogen significantly increased (p < 0.001) in the gentamycin-treated group as compared to the control group. The elevated level of serum creatinine, urea, and blood urea nitrogen was decreased significantly (p < 0.001) in groups treated with AHcr and AHO compared to the gentamycin group. Similarly, the histopathological study of kidney tissues from the gentamycin group showed tubular necrosis, vacuolation, and fibrosis.
CONCLUSIONS: The effect of crude extract and hexane soluble fraction of AH caused a significant reversal of gentamycin-induced nephrotoxicity.
RESULTS: Five repatriation missions performed was led by the National Agency for Disaster Management (NADMA) with the Ministry of Health providing technical expertise. A total of 432 citizens were repatriated from the missions. The operations were divided into four phases: the pre-boarding screening phase, the boarding and in-flight phase, the reception phase and the quarantine phase. The commercial aircraft used were from two different commercial airlines. Each mission had flight crew members between 10 and 17 people. There were 82 positive cases detected among the repatriated citizens. There was a single positive case of a healthcare worker involved in the mission, based on the sample taken on arrival of the flight. There were no infections involving flight team members.
CONCLUSION: Medical flight crew must be familiar with aircraft fittings that differ from one commercial airline to another as it influences infection control practices. A clear understanding of socio-political situation of a country, transmission routes of a pathogen, disease presentation, and knowledge of aviation procedures, aircraft engineering and design is of great importance in preparing for such missions. Our approach of multidiscipline team involvement managed to allow us to provide and execute the operations successfully.