Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.
Modified multi-walled carbon nanotubes (f-MWCNTs) and hydroxyapatite nanorods (n-HA) were reinforced into polypropylene (PP) with the support of a melt compounding approach. Varying composition of f-MWCNTs (0.1-0.3 wt.%) and nHA (15-20 wt.%) were reinforced into PP, to obtain biocomposites of different compositions. The morphology, thermal and mechanical characteristics of PP/n-HA/f-MWCNTs were observed. Tensile studies reflected that the addition of f-MWCNTs is advantageous in improving the tensile strength of PP/n-HA nanocomposites but decreases its Young's modulus significantly. Based on the thermal study, the f-MWCNTs and n-HA were known to be adequate to enhance PP's thermal and dimensional stability. Furthermore, MTT studies proved that PP/n-HA/f-MWCNTs are biocompatible. Consequently, f-MWCNTs and n-HA reinforced into PP may be a promising nanocomposite in orthopedics industry applications such as the human subchondral bone i.e. patella and cartilage and fabricating certain light-loaded implants.
Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.
Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.
Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.