The current experiment was conducted to evaluate and compare the efficacy of two different probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 in diet of Japanese eel, Anguilla japonica. Seven experimental diets were formulated to contain no probiotics (CON), three graded levels of B. subtilis at 106 (BS1), 107 (BS2), 108 (BS3) and L. plantarum at 106 (LP1), 107 (LP2), 108 (LP3) CFU/g diet. Twenty fish averaging 8.29 ± 0.06 g were distributed in to 21 aquaria and were randomly assigned to one of the experimental diets in triplicate groups. Average weight gain (WG), feed efficiency (FE), and protein efficiency ratio (PER) of fish fed B. subtilis at 107 (BS2) and 108 (BS3) CFU/g diet were significantly higher than those of fish fed other experimental diets (P
This study evaluated the synergistic effects of dietary Bacillus subtilis WB60 and mannanoligosaccharide (MOS) in juvenile Japanese eel, Anguilla japonica. Seven treatment diets were formulated to contain three different levels of B. subtilis (0.0, 0.5, and 1.0 × 107 CFU/g diet denoted as BS0, BS0.5, and BS1, respectively) with two MOS levels (0 and 5 g/kg diet denoted as M0 and M5, respectively), and one diet with oxytetracycline (OTC) at 5 g/kg diet. Each diet (BS0M0 (CON), BS0M5, BS0.5M0, BS0.5M5, BS1M0, BS1M5, and OTC) was fed to triplicate groups of 20 fish averaging 9.00 ± 0.11 g (mean ± SD) for eight weeks. Average weight gain, feed efficiency, specific growth rate and protein efficiency ratio of fish fed the BS0.5M5 and BS1M5 diets were significantly higher than those of fish fed CON, BS0.5M0 and OTC diets (P 0.05). Therefore, the results for growth performance, non-specific immune responses, intestinal morphology, and disease resistance demonstrated that supplementation of B. subtilis at 0.5 × 107 CFU/g diet and mannanoligosaccharide at 5 g/kg diet could have beneficial synergistic effects in Japanese eel. The isolated probiotic from eel and the selected prebiotic could lead to the development of a specific and potential synbiotic in Japanese eel aquaculture.
Butylated hydroxytoluene (BHT) is a commonly used antioxidant added to animal/fish feed to limit lipid autoxidation and peroxidation. Although there have been reviews and reports of BHT toxicity in animals, limited information is available with respect to the toxic effects and accumulation of BHT due to oral exposure in aquaculture species. Therefore, 120 days of feeding trial was conducted to evaluate the effects of dietary BHT on the marine fish olive flounder Paralichthys olivaceus. Graded levels of BHT were added to the basal diet in increments of 0, 10, 20, 40, 80, and 160 mg BHT/kg, corresponding to 0 (BHT0), 11 (BHT11), 19 (BHT19), 35 (BHT35), 85 (BHT85), and 121 (BHT121) mg BHT/kg diets, respectively. Fish with an average weight of 77.5 ± 0.3 g (mean ± SD) were fed one of the six experimental diets in triplicate groups. Growth performance, feed utilization, and survival rate were not significantly affected by the dietary BHT levels among all experimental groups, whereas BHT concentration in the muscle tissue was found to increase in a dose-dependent manner up to 60 days of the experimental period. Thereafter, BHT accumulation in muscle tissue showed a declining trend among all treatment groups. Furthermore, the whole-body proximate composition, nonspecific immune responses, and hematological parameters (except triglycerides) were not significantly influenced by the dietary levels of BHT. Blood triglyceride content was significantly higher in fish fed the BHT-free diet compared to all other treatment groups. Thus, this study demonstrates that dietary BHT (up to 121 mg/kg) is a safe and effective antioxidant without exhibiting any adverse effects on the growth performance, body composition, and immune responses in the marine fish olive flounder, P. olivaceus.