Displaying all 3 publications

Abstract:
Sort:
  1. Silva H, Chellappan K, Karunaweera N
    Comput Math Methods Med, 2021;2021:4208254.
    PMID: 34873414 DOI: 10.1155/2021/4208254
    Skin lesions are a feature of many diseases including cutaneous leishmaniasis (CL). Ulcerative lesions are a common manifestation of CL. Response to treatment in such lesions is judged through the assessment of the healing process by regular clinical observations, which remains a challenge for the clinician, health system, and the patient in leishmaniasis endemic countries. In this study, image processing was initially done using 40 CL lesion color images that were captured using a mobile phone camera, to establish a technique to extract features from the image which could be related to the clinical status of the lesion. The identified techniques were further developed, and ten ulcer images were analyzed to detect the extent of inflammatory response and/or signs of healing using pattern recognition of inflammatory tissue captured in the image. The images were preprocessed at the outset, and the quality was improved using the CIE L∗a∗b color space technique. Furthermore, features were extracted using the principal component analysis and profiled using the signal spectrogram technique. This study has established an adaptive thresholding technique ranging between 35 and 200 to profile the skin lesion images using signal spectrogram plotted using Signal Analyzer in MATLAB. The outcome indicates its potential utility in visualizing and assessing inflammatory tissue response in a CL ulcer. This approach is expected to be developed further to a mHealth-based prediction algorithm to enable remote monitoring of treatment response of cutaneous leishmaniasis.
  2. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
  3. MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al.
    Wellcome Open Res, 2022;7:136.
    PMID: 35651694 DOI: 10.12688/wellcomeopenres.17795.1
    This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links