Displaying all 6 publications

Abstract:
Sort:
  1. Sajab MS, Mohan D, Santanaraj J, Chia CH, Kaco H, Harun S, et al.
    Sci Rep, 2019 08 12;9(1):11703.
    PMID: 31406228 DOI: 10.1038/s41598-019-48274-2
    The recognition of cellulose nanofibrils (CNF) in the past years as a high prospect material has been prominent, but the impractical cellulose extraction method from biomass remained as a technological barrier for industrial practice. In this study, the telescopic approach on the fractionation of lignin and cellulose was performed by organosolv extraction and catalytic oxidation from oil palm empty fruit bunch fibers. The integration of these techniques managed to synthesize CNF in a short time. Aside from the size, the zeta potential of CNF was measured at -41.9 mV, which allow higher stability of the cellulose in water suspension. The stability of CNF facilitated a better dispersion of Fe(0) nanoparticles with the average diameter size of 52.3-73.24 nm through the formulation of CNF/Fe(0). The total uptake capacity of CNF towards 5-fluorouracil was calculated at 0.123 mg/g. While the synergistic reactions of adsorption-oxidation were significantly improved the removal efficacy three to four times greater even at a high concentration of 5-fluorouracil. Alternatively, the sludge generation after the oxidation reaction was completely managed by the encapsulation of Fe(0) nanoparticles in regenerated cellulose.
  2. Begum S, Yuhana NY, Md Saleh N, Kamarudin NHN, Sulong AB
    Carbohydr Polym, 2021 May 01;259:117613.
    PMID: 33673980 DOI: 10.1016/j.carbpol.2021.117613
    A large amount of wastewater is typically discharged into water bodies and has extremely harmful effects to aquatic environments. The removal of heavy metals from water bodies is necessary for the safe consumption of water and human activities. The demand for seafood has considerably increased, and millions of tons of crustacean waste are discarded every year. These waste products are rich in a natural biopolymer known as chitin. The deacetylated form of chitin, chitosan, has attracted attention as an adsorbent. It is a biocompatible and biodegradable polymer that can be modified and converted to various derivatives. This review paper focuses on relevant literature on strategies for chemically modifying the biopolymer and its use in the removal of heavy metals from water and wastewater. The different aspects of chitosan-based derivatives and their preparation and application are elucidated. A list of chitosan-based composites, along with their adsorptivity and experimental conditions, are compiled.
  3. Mohan D, Teong ZK, Sajab MS, Kamarudin NHN, Kaco H
    Polymers (Basel), 2021 Jun 08;13(12).
    PMID: 34201366 DOI: 10.3390/polym13121912
    The tendency to use cellulose fibrils for direct ink writing (DIW) of three-dimensional (3D) printing has been growing extensively due to their advantageous mechanical properties. However, retaining cellulose in its fibrillated forms after the printing process has always been a challenge. In this study, cellulose macrofibrils (CMFs) from oil palm empty fruit bunch (OPEFB) fibers were partially dissolved for consistent viscosity needed for DIW 3D printing. The printed CMF structure obtained from optimized printing profiles (volumetric flow rate, Qv = 9.58 mm/s; print speed, v = 20 mm/s), exhibited excellent mechanical properties (tensile strength of 66 MPa, Young's modulus of 2.16 GPa, and elongation of 8.76%). The remarkable structural and morphological effects of the intact cellulose fibrils show a homogeneous distribution with synthesized precipitated calcium carbonate (CaCO3) nanoparticles. The shear-aligned CMF/CaCO3 printed composite exhibited a sustained therapeutic drug release profile that can reduce rapid release that has adverse effects on healthy cells. In comparison with the initial burst release of 5-fluorouracil (5-FU) by CaCO3, the controlled release of 5-fluorouracil can be varied (48 to 75%) with the composition of CMF/CaCO3 allowing efficient release over time.
  4. Ruiz-Sorribas A, Poilvache H, Kamarudin NHN, Braem A, Van Bambeke F
    Biofouling, 2021 05;37(5):481-493.
    PMID: 34225500 DOI: 10.1080/08927014.2021.1919301
    Biofilms are an important medical burden, notably for patients with orthopaedic device-related infections. When polymicrobial, these infections are more lethal and recalcitrant. Inter-kingdom biofilm infections are poorly understood and challenging to treat. Here, an in vitro three-species model including Staphylococcus aureus, Escherichia coli and Candida albicans was developed, to represent part of the diversity observed in orthopaedic infections or other clinical contexts. The importance of fungal hyphae for biofilm formation and virulence factor expression was explored. Two protocols were set up, allowing, or not, for hyphal formation. Culturable cells and biomass were characterised in both models, and biofilms were imaged in bright-field, confocal and electron microscopes. The expression of genes related to virulence, adhesion, exopolysaccharide synthesis and stress response was analysed in early-stage and mature biofilms. It was found that biofilms enriched in hyphae had larger biomass and showed higher expression levels of genes related to bacterial virulence or exopolysaccharides synthesis.
  5. Devi T, Saleh NM, Kamarudin NHN, Roslan NJ, Jalil R, Hamid HA
    Ecotoxicol Environ Saf, 2023 Dec;268:115706.
    PMID: 37992639 DOI: 10.1016/j.ecoenv.2023.115706
    The utilization of phthalates and bisphenol A (BPA) as the major component in plastic and its derivative industry has raised concerns among the public due to the harmful effects caused by these organic pollutants. These pollutants are found to exhibit unique physicochemical properties that allow the pollutants to have prolonged existence in the environment, thus causing damage to the environment. Since phthalates and bisphenol A are used in a variety of industrial applications, the industry must recover these compounds from its water before releasing the pollutants into the environment. As a result, these materials have a promising future in industrial applications. Therefore, the discovery of new quick and reliable abatement technologies is important to ensure that these organic pollutants can be detected and removed from the water sources. This review highlights the use of the adsorption method to remove phthalates and BPA from water sources by employing novel modified adsorbent magnetite functionalized covalent organic frameworks (MCOFs). MCOFs is a new class of porous materials that have demonstrated promising features in a variety of applications due to their adaptable structures, significant surface areas, configurable porosity, and customizable chemistry. The structural attributes, functional design strategies, and specialized for environmental applications before offering some closing thoughts and suggestions for further research were discussed in this paper in addition to developing an innovative solution for the industry to the accessibility for clean water.
  6. De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, et al.
    Microbiol Spectr, 2024 Jan 11;12(1):e0321923.
    PMID: 38084971 DOI: 10.1128/spectrum.03219-23
    Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links