Displaying 1 publication

Abstract:
Sort:
  1. Kafy AA, Dey NN, Saha M, Altuwaijri HA, Fattah MA, Rahaman ZA, et al.
    J Environ Manage, 2024 Nov;370:122427.
    PMID: 39305877 DOI: 10.1016/j.jenvman.2024.122427
    Climate change and rapid urbanization are dramatically altering coastal ecosystems worldwide, with significant implications for land surface temperatures (LST) and carbon stock concentration (CSC). This study investigates the impacts of day and night time LST dynamics on CSC in Cox's Bazar, Bangladesh, from 1996 to 2021, with future projections to 2041. Using Landsat and MODIS imagery, we found that mean daytime LST increased by 3.57 °C over the 25-year period, while nighttime LST showed a slight decrease of 0.05 °C. Concurrently, areas with no carbon storage increased by 355.78%, while high and very high CSC zones declined by 14.15% and 47.78%, respectively. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model estimated a 28.64 km2 reduction in high CSC areas from 1996 to 2021. Statistical analysis revealed strong negative correlations between LST and vegetation indices (R2 = -0.795 to -0.842, p 32 °C, while areas with LST <24 °C may decrease to 1.68%. These observations underscore the pressing necessity for sustainable strategies in urban planning and conservation in swiftly evolving coastal areas, especially considering the challenges posed by climate change and population growth.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links