Displaying all 3 publications

Abstract:
Sort:
  1. Saeed SI, Kamaruzzaman NF, Gahamanyi N, Nguyen TTH, Hossain D, Kahwa I
    Ir Vet J, 2024 Feb 28;77(1):4.
    PMID: 38418988 DOI: 10.1186/s13620-024-00264-1
    Globally, Mastitis is a disease commonly affecting dairy cattle which leads to the use of antimicrobials. The majority of mastitis etiological agents are bacterial pathogens and Staphylococcus aureus is the predominant causative agent. Antimicrobial treatment is administered mainly via intramammary and intramuscular routes. Due to increasing antimicrobial resistance (AMR) often associated with antimicrobial misuse, the treatment of mastitis is becoming challenging with less alternative treatment options. Besides, biofilms formation and ability of mastitis-causing bacteria to enter and adhere within the cells of the mammary epithelium complicate the treatment of bovine mastitis. In this review article, we address the challenges in treating mastitis through conventional antibiotic treatment because of the rising AMR, biofilms formation, and the intracellular survival of bacteria. This review article describes different alternative treatments including phytochemical compounds, antimicrobial peptides (AMPs), phage therapy, and Graphene Nanomaterial-Based Therapy that can potentially be further developed to complement existing antimicrobial therapy and overcome the growing threat of AMR in etiologies of mastitis.
  2. Ashique S, Mohanto S, Ahmed MG, Mishra N, Garg A, Chellappan DK, et al.
    Heliyon, 2024 Jul 15;10(13):e34092.
    PMID: 39071627 DOI: 10.1016/j.heliyon.2024.e34092
    The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links