Displaying all 4 publications

Abstract:
Sort:
  1. Hashim UR, Jumahat A, Jawaid M
    Nanomaterials (Basel), 2021 Jun 01;11(6).
    PMID: 34206085 DOI: 10.3390/nano11061468
    Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, the incorporation of high strength and stiffness nanofiller, namely graphene nanoplatelet (GNP), could create superior composite properties. However, the main challenges of incorporating this nanofiller are its poor dispersion state and aggregation in epoxy due to its high surface area and strong Van der Waals forces in between graphene sheets. In this study, we used one of the effective methods of functionalization to improve graphene's dispersion and also introducing nanosilica filler to enhance platelets shear mechanism. The high dispersive silica nanospheres were introduced in the tactoids morphology of stacked graphene nanosheets in order to produce high shear forces during milling and exfoliate the GNP. The hybrid nanofiller modified epoxy polymers were impregnated into BF to evaluate the mechanical properties of the basalt fibre reinforced polymeric (BFRP) system under tensile, compression, flexural, and drop-weight impact tests. In response to the synergistic effect of zero-dimensional nanosilica and two-dimensional graphene nanoplatelets enhanced the mechanical properties of BFRP, especially in Basalt fibre + 0.2 wt% GNP/15 wt% NS (BF-H0.2) with the highest increment in modulus and strength to compare with unmodified BF. These findings also revealed that the incorporation of hybrid nanofiller contributed to the improvement in the mechanical properties of the composite. BF has huge potential as an alternative to the synthetic glass fibre for the fabrication of mechanical components and structures.
  2. Hashim UR, Jumahat A, Jawaid M, Dungani R, Alamery S
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33172162 DOI: 10.3390/polym12112621
    This work aims to give insight on the effect of accelerated weathering, i.e., the combination of ultraviolet (UV) exposure and water spraying, on the visual and mechanical properties of basalt fiber reinforced polymer (BFRP) composites. The solvent exchange method, sonication and high shear milling technique were used to prepare the nanocomposite laminates. Three types of laminates were fabricated, i.e., unmodified BFRP, nanosilica modified BFRP and graphene nanoplatelet (GNP) modified BFRP composites with the total fiber loading of 45 wt.%. Glass fiber reinforced polymer (GFRP) laminate was also prepared for performance comparison purposes between the natural and synthetic fibers. The laminates were exposed to UV with a total weathering condition of 504 h using a Quantum-UV accelerated weathering tester. The weathering condition cycle was set at 8 h 60 °C UV exposure and 4 h 50 °C condensation. The discoloration visual inspection on the tested specimen was observed under the optical microscope. The obtained results showed that the UV exposure and water absorption caused severe discoloration of the laminates due to photo-oxidation reaction. The effect of weathering conditions on tensile and flexural properties of unmodified BFRP composites indicated that the UV exposure and water absorption caused reduction by 12% in tensile strength and by 7% in flexural strength. It is also found that the reduction in tensile and flexural properties of nanomodified BFRP composites was smaller than the unmodified system. It concluded from this work, that the mineral based composites (i.e., BFRP) has high potential for structural applications owing to its better properties than synthetic based composites (i.e., GFRP).
  3. Sapiai N, Jumahat A, Jawaid M, Abu MZ, Chalid M
    Polymers (Basel), 2021 Sep 08;13(18).
    PMID: 34577933 DOI: 10.3390/polym13183032
    The granite processing industry generates large amounts of bottom granite dust waste every day. After the drying and heating process of concrete mixture production, the granite dust is blown and collected in the filtering nozzle. This very fine particle granite dry fly dust, with a particle size maximum distribution of 500 μm, can easily be blown away by wind and cause serious environmental impacts. The use of this waste material would be an effective way to reduce such impacts. Therefore, this paper presents an experimental study on the potential of granite dust as a filler in enhancing the mechanical performance of a hybrid basalt/glass (WB/GCSM) composite. The unhole and open hole tensile (UHT and OHT) properties, low velocity impact (LVI) properties, quasi-static indentations (QSI) properties, flexural properties, interlaminar shear stress (ILSS) properties, and morphology of the developed WB/GCSM composites were evaluated. To meet the objective of this study, composite specimens were produced using 1.5-60 μm granite fly dust at three (3) different loadings (1, 3 and 5 wt%). This granite fly dust was incorporated into polyurethane resin using a mechanical stirring technique. The production of FRP laminates then completed using a hand lay-up and vacuum bagging technique. Four types of the WB/GCSM composites systems, i.e., [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] were fabricated and compared. The analysis results for the mechanical tests revealed that the incorporation of granite dust of up to 3 wt% had increased the UHT, OHT, LVI, QSI, flexural and ILSS properties of all WB/GCSM composites systems. Higher levels of damage tolerance in UHT and OHT tests, and increased ductility index in the LVI test were obtained when granite dust was added up to 5 wt%. However, a remarkable improvement in all mechanical properties was noticed for [WB/GCSM/1GD], which recorded the highest mechanical performance among all WB/GCSM composite systems.
  4. Talib AAA, Jumahat A, Jawaid M, Sapiai N, Leao AL
    Materials (Basel), 2021 Feb 02;14(3).
    PMID: 33540915 DOI: 10.3390/ma14030701
    Basalt fibre is a promising mineral fibre that has high potential to replace synthetic based glass fibre in today's stringent environmental concern. In this study, friction and wear characteristics of glass and basalt fibres reinforced epoxy composites were studied and comparatively evaluated at two test stages. The first stage was conducted at fixed load, speed and distance under three different conditions; adhesive, abrasive and erosive wear, wherein each composite specimens slide against steel, silicon carbide, and sand mixtures, respectively. The second stage was conducted involving different types of adhesive sliding motions against steel counterpart; unidirectional and reciprocating motion, with the former varied at pressure-velocity (PV) factor; 0.23 MPa·m/s and 0.93 MPa·m/s, while the latter varied at counterpart's configuration; ball-on-flat (B-O-F) and cylinder-on-flat (C-O-F). It was found that friction and wear properties of composites are highly dependent on test conditions. Under 10 km test run, Basalt fibre reinforced polymer (BFRP) composite has better wear resistance against erosive sand compared to Glass fibre reinforced polymer (GFRP) composite. In second stage, BFRP composite showed better wear performance than GFRP composite under high PV of unidirectional sliding test and under B-O-F configuration of reciprocating sliding test. BFRP composite also exhibited better friction properties than GFRP composite under C-O-F configuration, although its specific wear rate was lower. In scanning electron microscopy examination, different types of wear mechanisms were revealed in each of the test conducted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links